Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nanotechnology ; 32(31)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33794506

RESUMO

To overcome multi-drug resistance in microbes, highly efficient antimicrobial substances are required that have a controllable antibacterial effect and are biocompatible. In the present study, an efficient phototherapeutic antibacterial agent, human serum albumin (HSA)/reduced graphene oxide (rGO)/Cladophora glomeratabionanocomposite was synthesized by the incorporation of rGO nanoparticles with HSA, forming protein-rGO, and decorated with a natural freshwater seaweedCladophora glomerata. The prepared HSA/rGO/Cladophora glomeratabionanocomposite was characterized by spectroscopic (UV-vis, FTIR, XRD and Raman) and microscopic (TEM and SEM) techniques. The as-synthesized bionanocomposite showed that sunlight/NIR irradiation stimulated ROS-generating dual-phototherapic effects against antibiotic-resistant bacteria. The bionanocomposite exerted strong antibacterial effects (above 96 %) against amoxicillin-resistantP. aeruginosaandS. aureus, in contrast to single-model-phototherapy. The bionanocomposite not only generated abundant ROS for killing bacteria, but also expressed a fluorescence image for bacterial tracking under sunlight/NIR irradiation. Additionally, the bionanocomposite displayed pronounced antioxidant activity.


Assuntos
Clorófitas/fisiologia , Grafite/química , Estresse Oxidativo/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Albumina Sérica Humana/química , Staphylococcus aureus/crescimento & desenvolvimento , Carga Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Células HeLa , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Nanocompostos , Tamanho da Partícula , Fotoquimioterapia , Terapia Fototérmica , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos
2.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443693

RESUMO

A new abietane diterpene namely plectrabarbene (2), together with two known compounds: sugiol (1) and 11,14-dihydroxy-8,11,13-abietatrien-7-one (3) have been isolated from the aerial parts of Plectranthus barbatus Andr. (Labiatae). The structures of these compounds were determined by various spectral techniques (e.g., UV, IR, NMR, and FAB) and by comparison with the literature data. A molecular docking study of the isolated diterpenes (1-3) was performed with AChE to gain an insight into their AChE inhibition mechanism. The results of docking experiments revealed that the all tested compounds showed binding affinity at the active site of AchE in comparison to donepezil.


Assuntos
Abietanos/química , Inibidores da Colinesterase/química , Componentes Aéreos da Planta/química , Plectranthus/química , Abietanos/isolamento & purificação , Inibidores da Colinesterase/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química
3.
Molecules ; 25(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560479

RESUMO

A series of iridoid glycosides were isolated from the leaves of Lasianthus verticillatus (Lour.) Merr., belonging to family Rubiaceae. A new iridoid glycoside, lasianoside F (1), and three new bis-iridoid glycosides, lasianosides G-I (2-4), together with four known compounds (5-8) were isolated. The structures were established by spectroscopic methods, including 1D and 2D NMR experiments (1H, 13C, DEPT, COSY, HSQC, HMBC, and NOESY) in combination with HR-ESI-MS and CD spectra.


Assuntos
Glicosídeos Iridoides/química , Extratos Vegetais/química , Folhas de Planta/química , Rubiaceae/química , Ressonância Magnética Nuclear Biomolecular
4.
Pak J Pharm Sci ; 32(1): 153-163, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30772804

RESUMO

It was deemed of interest to investigate Antidesm bunius aerial parts from phytochemical and biological points of view due to limited previous studies. Isolation and identification of phenolic compounds and evaluation of the potential antimicrobial and cytotoxic effects of A. bunius aerial parts was investigated. The petroleum ether (PEE) and 80% EtOH extracts (EE), as well as, n-hexane (HF), CHCl3 (CF), EtOAc (EAF), n-BuOH (BF) and H2O soluble fractions (WF) of the latter were prepared. Phytochemical study has been performed for isolation and identification of the major polyphenols. Antimicrobial activity, using diffusion agar technique, and potential cytotoxic effect against HepG2, MCF7 and HCT cell lines were evaluated. Malic acid (I), caffeic acid (II), methyl benzoate (III), (+)-catechin (IV), (-)-epicatechin (V), epicatechin-(4ß→8)-catechin (procynidin B1, VI) and epicatechin-(4ß→8)-epicatechin (procyanidin B2, VII) were isolated. Compounds I-VII showed strong to moderate antimicrobial activity, with MIC values in the range of 1.95-125µg/ml except for compounds 1 and IV, which did not show any effect. All tested samples showed dose dependent cytotoxic effect against all three tested cell lines. PEE showed strong cytotoxic activity (IC50=23.7-38.2µg/ml). Furthermore, compound VI showed potent cytotoxicity against HepG2, MCF7 and HCT cell lines (IC50=24.7, 16.5 and 18.0µg/ml) respectively. The strong to moderate antimicrobial activity and cytotoxic effect of the plant could be attributed to its content of phenolic acids, flavan-3-ols and/or proanthocyanidins. These findings were confirmed by results obtained for the isolated compounds.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fungos/efeitos dos fármacos , Malpighiales , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Relação Dose-Resposta a Droga , Fungos/crescimento & desenvolvimento , Células Hep G2 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Malpighiales/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Solventes/química
5.
Saudi Pharm J ; 26(2): 266-273, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30166927

RESUMO

In this study, we developed a validated HPTLC method for concurrent analysis of two natural antioxidant triterpenes, oleanolic acid (OA) and ß-amyrin (BA) in the biologically active fractions (petroleum ether, toluene, chloroform, ethyl acetate and n-butanol) of aerial parts of three Hibiscus species (H. calyphyllus, H. deflersii and H. micranthus). The chromatography was conducted on normal HPTLC (ready to use glass-plate coated with silica gel 60 F254) plate with chloroform and methanol (97:3, V/V) used as mobile phase. The derivatization of the developed plate was done with p-anisaldehyde and scanned at λmax = 575 nm. Well resolved and intense peaks of OA and BA were obtained at Rf = 0.36 and 0.57, respectively. The linear regression equation/correlation coefficient (r2) for OA and BA were Y = 6.65x + 553.35/0.994 and Y = 9.177x + 637.23/0.998, respectively in the linearity range of 100-1200 ng/spot indicated good linear relationship. The low values of %RSD for intra-day/inter-day precision of OA (1.45-1.61/1.38-1.59) and BA (1.52-1.57/1.50-1.53) suggested that the method was precise. The recovery/RSD (%) values for OA and BA were found to be 99.21-99.62/1.39-1.95 and 98.75-99.70/1.56-1.80, respectively assures the reasonably good accuracy of the proposed method. Fifteen samples were analyzed to check the content of OA and BA by using the developed HPTLC methods. The content of OA in different samples were found to be 3.87 (HmP) > 1.212 (HcP) > 0.673 (HdC) > 0.493 (HdP) > 0.168 (HdE) > 0.059 (HcC) > 0.015 (HcE) > 0.008 (HmT) µg/mg of the dried weight of extract. However the content of BA was found as: 2.293 (HmP) > 1.852 (HdT) > 0.345 (HdC) > 0.172 (HmT) > 0.041 (HdE) > 0.008 (HcC) µg/mg of the dried weight of extract. Some Hibiscus species fractions exhibited good antioxidant potential like: HcE (IC50 = 17.6 ±â€¯1.8) > HdB (IC50 = 32.16 ±â€¯0.9) > HmP (IC50 = 80.4 ±â€¯4.5) > HmT (IC50 = 99.7 ±â€¯8.2) when compared with ascorbic acid (IC50 = 14.2 ±â€¯0.5), while other fractions exhibited only mild antioxidant capability. The developed HPTLC method can be further exploited for analysis of these markers in the quality assessment of raw material as well as herbal formulations available in the market.

6.
Saudi Pharm J ; 26(7): 1060-1067, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30416363

RESUMO

The genus Hibiscus contains about 275 species of flowering plants widely grown in the tropics and sub-tropics. The available literature revealed that several Hibiscus species exhibited excellent anticancer activity against several cancer cells like lung, breast, and liver. This motivated the authors to explore the anticancer property of other Hibiscus species (Hibiscus calyphyllus, H. deflersii and H. micranthus) along with development of a validated HPTLC method for the concurrent analysis of three anticancer biomarkers (ursolic acid, ß-sitosterol and lupeol) in different Hibiscus species. The anticancer activity of various fractions (petroleum ether, toluene, dichloromethane, ethyl acetate and n-butanol) of all the Hibiscus species (aerial parts) were evaluated in vitro against HepG2 and MCF-7 cell lines using MTT assay. The HPTLC analysis was carried out using chloroform and methanol as mobile phase (97:3; v/v) on 20 × 10 cm glass-backed silica gel 60F254 plates and analyzed different phytoconstituents present in all fractions at λ = 575 nm wavelength. Of the tested fractions of H. calyphyllus, H. deflersii and H. micranthus, HdP (H. deflersii petroleum ether fraction) exhibited the most potent cytotoxic effect on HepG2 and MCF-7 (IC50: 14.4 and 11.1 µg/mL, respectively) cell lines. Using the developed HPTLC method a compact and intense peak of ursolic acid, ß-sitosterol and lupeol were obtained at Rf = 0.22, 0.39 and 0.51, respectively. The LOD/LOQ (ng) for ursolic acid, ß-sitosterol and lupeol were found as 42.30/128.20, 13.20/40.01 and 31.57/95.68, respectively in the linearity range 100-1200 ng/spot. The obtained result showed maximum presence of ursolic acid, ß-sitosterol and lupeol (5.50, 11.85 and 7.47 µg/mg, respectively) in HdP which also supported its strong anticancer effect. Our data suggest that H. deflersii petroleum ether fraction (HdP) can be further subjected to the isolation of active cytotoxic phytoconstituents and establishment of their mechanism of action. The maiden developed HPTLC method for concurrent analysis of anticancer biomarkers may be further employed in the in process quality control of herbal formulation containing the said biomarkers.

7.
Luminescence ; 32(2): 223-230, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27306476

RESUMO

A sipholane triterpenoid, named sipholenone A, with anti-cancer properties was isolated from the Red Sea sponge Siphonochalina siphonella and characterized by proton and carbon-13 nuclear magnetic resonance (1 H NMR and 13 C NMR) spectroscopies. The goal of this study was to visualize the binding of this triterpenoid with human serum albumin (HSA) and to determine its binding site on the biomacromolecule. The interaction was visualized using fluorescence quenching, synchronous fluorescence, far- and near-UV circular dichroism (CD), UV-visible and Fourier transform-infrared (FT-IR) spectroscopies. UV-visible spectroscopy indicated the formation of a ground-state complex as a result of the interaction. Sipholenone A quenches the fluorescence of HSA via a static quenching mechanism. A small blue shift in the fluorescence quenching profiles suggested the involvement of hydrophobic forces in the interaction. Sipholenone A binding takes place at site I of subdomain II A with a 1:1 binding ratio, as revealed by displacement binding studies using warfarin, ibuprofen and digitoxin. Far-UV CD and FT-IR studies showed that the binding of sipholenone A to HSA also had a small effect on the protein's secondary structure with a slight decrease in the α-helical content. Several thermodynamic parameters were calculated, along with Forster's radiative energy transfer analysis.


Assuntos
Antineoplásicos/química , Poríferos/química , Albumina Sérica/química , Triterpenos/química , Animais , Dicroísmo Circular , Humanos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Z Naturforsch C J Biosci ; 72(5-6): 197-201, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27845891

RESUMO

The naphthalene glycosidecurviflorside [1,5-dihydroxy-8-methoxynaphthalene-2-O-ß-D-xylopyranoside] (3) and the flavanol curviflorin [(+)-catechin-7-O-3″,4″-dihydroxybenzoate] (4), along with two known flavonoids: (+)-catechin (1) and quercetin (2) were isolated from the shoots of Plicosepalu scurviflorus Benth. (Loranthaceae) growing in Saudi Arabia and the chemical structures were elucidated by 2D-NMR spectroscopy.


Assuntos
Flavonóis/isolamento & purificação , Glicosídeos/isolamento & purificação , Loranthaceae/química , Naftalenos/isolamento & purificação , Naftóis/isolamento & purificação , Loranthaceae/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Brotos de Planta/química
9.
Environ Sci Pollut Res Int ; 31(11): 17064-17096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334931

RESUMO

Due to massive industrial development, organic and inorganic wastes are very common in most industrial effluents from the pharmaceutical industry. Even in low concentrations, they are very dangerous and harmful to humans and other living organisms. Antibiotics are frequently detected in surface waters, in soil, in wastewater from sewage treatment plants, and even in drinking water. The major environmental threat they pose has prompted to search for effective and environmentally friendly means of eliminating these toxins. The biogenic synthesis of nanomaterials using natural herbal extracts has attracted considerable attention due to their low-cost, environmentally friendly and non-toxic nature, and as a reversal of various physical and chemical processes. The ceria nanoparticles (CeO2 NPs), nickel oxide nanoparticles (NiO NPs), and CeO2/NiO nanocomposites (CeO2/NiO NCS) were successfully prepared by simple biosynthetic routes using Polysiphonia urceolata algae extract as green surfactants and tested for toxic ofloxacin removal efficiency. The formed nanostructures were identified and characterized by various microscopic (FESEM-EDX, TEM, XRD, BET, and XPS) and spectroscopic (UV-Vis, FTIR, and TGA) methods. The adsorption/desorption of ofloxacin (OFX) on the surface of the nanomaterials was investigated under optimized conditions (initial dose 20 mg/L, agitation speed 250 rpm, pH 12, adsorbent dose 0.5 mg/L, and contact time 120 min). The removal efficiencies were 78%, 86%, and 94% for CeO2 NPs, NiO NPs and CeO2/NiO NCS, respectively, where OFX removal was found to be spontaneous, followed by Freundlich isotherm and pseudo-second order kinetic reaction model. The OFX adsorption mechanism on the nanomaterials involved the surface complexation via specific electrostatic attraction and H-bonding. The biogenic nanomaterials were also tested for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus. The CeO2/NiO NCS exhibited the highest antibacterial activity with zone of inhibition (31.12 ± 0.59 mm) against S. epidermidis, followed by CeO2NPs and NiONPs with zones of inhibition (25.53 ± 1.2 mm) and (21.42 ± 0.6 mm) against P. aeruginosa and S. epidermidis, respectively. This study demonstrated the efficiency of the synthesized nanomaterials in removing toxins such as OFX from contaminated water and can serve as potential antibacterial and antioxidant agents. Notably, the heterogeneous nanomaterials demonstrated remarkable stability across a broad pH range, promising reusability and indicated tremendous potential of waste biomass reduction and OFX effluent treatment.


Assuntos
Cério , Água Potável , Algas Comestíveis , Nanocompostos , Níquel , Rodófitas , Humanos , Antibacterianos/química , Nanocompostos/química , Ofloxacino
10.
Sci Rep ; 14(1): 1297, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221517

RESUMO

One of the most promising, non-toxic, and biocompatible developments for many biological activities is the green synthesis of nanoparticles from plants. In this work, we investigated the antifungal activity of silver nanoparticles (AgNPs) biosynthesized from Rhazya stricta aqueous extract against several plant pathogenic fungi. UV-visible spectroscopy, Zeta potential analysis, Fourier-transform infrared spectroscopy (FTIR), and transmitted electron microscopy (TEM) were used to analyze the biosynthesized AgNPs. Drechslera halodes, Drechslera tetramera, Macrophomina phaseolina, Alternaria alternata, and Curvularia australiensis were tested for their potential antifungal activity. Surface Plasmon Resonance (SPR) of Aq. AgNPs and Alkaline Aq. AgNPs was observed at 405 nm and 415 nm, respectively. FTIR analysis indicated hydroxyl, nitrile, amine, and ketone functional groups. Aq. AgNPs and Alka-line Aq. AgNPs had velocities of - 27.7 mV and - 37.9 mV and sizes of 21-90 nm and 7.2-25.3 nm, respectively, according to zeta potential studies and TEM. The antifungal examination revealed that all species' mycelial development was significantly inhibited, accompanied by severe ultra-structural alterations. Among all treatments, Aq. AgNPs were the most effective fungicide. M. phaseolina was statistically the most resistant, whereas A. alternata was the most vulnerable. To the best of our knowledge, this is the first report on R. stricta's antifungal activity against these species.


Assuntos
Apocynaceae , Fungicidas Industriais , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia
11.
Bioinorg Chem Appl ; 2024: 8180102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962162

RESUMO

Background: Magnesium oxide nanoparticles (MgONPs) have been fabricated by several approaches, including green chemistry approach due to diverse application and versatile features. Objectives: The current study aimed to prepare a convenient, biocompatible, and economically viable MgONPs using waste citron peel extract (CP-MgONPs) to evaluate their biological applications. Methods: The CP-MgONPs were synthesized by a sustainable approach from extract of waste citron peel both as capping and reducing agents without use of any hazardous material. The physicochemical features of formed CP-MgONPs were determined by sophisticated analytical and microscopic techniques. The biogenic CP-MgONPs were examined for their antibacterial, anticarcinogenic, and photocatalytic attributes. Results: A prominent absorption peak in the UV-Vis spectra at 284 nm was the distinguishing characteristic of the CP-MgONPs. The scanning electron microscopy (SEM) reveals polyhedral morphology of nanoparticles with slight agglomeration of CP-MgONPs. The CP-MgONPs exerted excellent antibacterial potencies against six bacterial strains. The CP-MgONPs displayed significant susceptibility towards E. coli (20.72 ± 0.33 mm) and S. aureus (19.52 ± 0.05 mm) with the highest inhibition zones. The anticancer effect of CP-MgONPs was evaluated against HepG2 (IC50 : 15.3 µg·mL-1) cancer cells and exhibited potential anticancer activity. A prompt inversion of cellular injury manifested as impairment of the integrity of the cell membrane, apoptosis, and oxidative stress was observed in treated cells with CP-MgONPs. The biosynthesized CP-MgONPs also conducted successful photocatalytic potential as much as MgO powder under the UV-light using acid orange 8 (AO-8) dye. The degradation performance of CP-MgONPs showed over 94% photocatalytic degradation efficiency of acid orange 8 (AO-8) dyes within a short time. Conclusions: Outcomes of this research signify that biogenic CP-MgONPs may be advantageous at low concentrations, with positive environmental impacts.

12.
Environ Sci Pollut Res Int ; 30(31): 77044-77062, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37249782

RESUMO

The main cause of various fatal diseases in humans and animals is environmental pollution. Ag-doped alumina nanocomposite was prepared using coffee husk extract with a large BET surface area of 126.58 m2 g-1 and investigated for its antibacterial potential against both bacterial strains Escherichia coli and Salmonella typhimurium, and observed as an effective sorbent for removing the water pollution dye indigo carmine (IGC). The lowest concentration of the nanocomposite and the maximum contact time required to achieve complete inhibition of bacteria present in the contaminated water, as well as the capacity of sorption of IGC, were investigated. The results showed that the minimum inhibitory concentration of the Ag-doped alumina nanocomposite was 12 µg mL-1 for both bacterial strains, with the highest inhibition occurring in E. coli. Moreover, the nanocomposite exhibited an experimental qt of 462.7 mg g-1 from 160 mg L-1 IGC solution at 50 °C and followed the Langmuir model. The thermodynamic results showed that the process was endothermic, spontaneous, and physisorptive. The nanocomposite was used to fully treat water samples contaminated with 10 mg L-1 concentrations of IGC. For six consecutive cycles, the reuse research showed an average efficiency of 95.72 ± 3.6%. Consequently, the synthesized Ag-doped alumina nanocomposite is suitable for treatments of contaminated water.


Assuntos
Nanocompostos , Água , Humanos , Prata/farmacologia , Óxido de Alumínio , Escherichia coli , Descontaminação , Antibacterianos/farmacologia
13.
PLoS One ; 18(4): e0282742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011052

RESUMO

A new sunflower oil-chitosan decorated fly ash (sunflower oil/FA-CSNPs) bionanocomposite film was synthesized using the extract of Litopenaeus vannamei (White shrimp) and evaluated as an antibacterial and immunomodulatory agent. Fly ash-chitosan nanoparticles were produced by using chitosan (CS) isolated from white shrimp extract, glacial acetic acid and sodium tripolyphosphate solution as cross-linkage. The ultrafine polymeric sunflower oil-CS film was fabricated by treating fly ash-chitosan nanoparticles with sunflower oil in glacial acetic acid under continuous stirring for 24 h. The nanostructure of the fabricated polymeric film was confirmed and characterized by different microscopic and spectroscopic approaches. The surface morphology of pre-synthesized bionanocomposite film was found to be homogenous, even and without cracks and pores. The crystallinity of formed bionanocomposite film was noticed at angles (2θ) at 12.65°, 15.21°, 19.04°, 23.26°, 34.82°, and 37.23° in the XRD spectrum. The fabricated film displayed excellent stability up to 380 °C. The formed sunflower oil/FA-CSNPs bionanocomposite film showed promising antibacterial towards Bacillus subtilis with highest zone of inhibition of 34 mm and Pseudomonas aeruginosa with zone of inhibition of 28 nm. The as-synthesized bionanocomposite film exhibited highest cell viability effect (98.95%), followed by FA-CSNPs (83.25%) at 200 µg mL-1 concentrations. The bionanocomposite film exerted notable immunomodulatory effect by promoting phagocytosis and enhancing the production of cytokines (NO, IL-6, IL-1ß, and TNF-α) in macrophage-derived RAW264.7 cell line.


Assuntos
Quitosana , Helianthus , Nanocompostos , Nanopartículas , Quitosana/química , Cinza de Carvão/química , Óleo de Girassol , Ácido Acético , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Polímeros , Nanocompostos/química
14.
PeerJ ; 11: e15004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967991

RESUMO

Background: Biosynthesized nanoparticles are gaining popularity due to their distinctive biological applications as well as bioactive secondary metabolites from natural products that contribute in green synthesis. Methodology: This study reports a facile, ecofriendly, reliable, and cost-effective synthesis of silver nanoparticles (AgNPs), copper oxide nanoparticles (CuONPs), and polymeric PVP-silver-copper oxide nanocomposite using ethanol extract of seaweed Laurencia dendroidea and were evaluated for antiprotozoal, anticancer and photocatalytic potential. The nanostructures of the AgNPs, CuONPs, and polymeric PVP-Ag-CuO nanocomposite were confirmed by different spectroscopic and microscopic procedures. Results: The UV-vis spectrum displayed distinct absorption peaks at 440, 350, and 470 nm for AgNPs, CuONPs, and polymeric Ag-CuO nanocomposite, respectively. The average particles size of the formed AgNPs, CuONPs, and Ag-CuO nanocomposite was 25, 28, and 30 nm, respectively with zeta potential values -31.7 ± 0.6 mV, -17.6 ± 4.2 mV, and -22.9 ± 4.45 mV. The microscopic investigation of biosynthesized nanomaterials revealed a spherical morphological shape with average crystallite sizes of 17.56 nm (AgNPs), 18.21 nm (CuONPs), and 25.46 nm (PVP-Ag-CuO nanocomposite). The antiprotozoal potential of green synthesized nanomaterials was examined against Leishmania amazonensis and Trypanosoma cruzi parasites. The polymeric PVP-Ag-CuO nanocomposite exerted the highest antiprotozoal effect with IC50 values of 17.32 ± 1.5 and 17.48 ± 4.2 µM, in contrast to AgNPs and CuONPs. The anticancer potential of AgNPs, CuONPs, and polymeric PVP-Ag-CuO nanocomposite against HepG2 cancer cell lines revealed that all the nanomaterials were effective and the highest anticancer potential was displayed by PVP-Ag-CuO nanocomposite with IC50 values 91.34 µg mL-1 at 200 µg mL-1 concentration. Additionally, PVP-Ag-CuO nanocomposite showed strong photocatalytic effect. Conclusion: Overall, this study suggested that the biogenic synthesized nanomaterials AgNPs, CuONPs, and polymeric PVP-Ag-CuO nanocomposite using ethanol extract of seaweed L. dendroidea possesses promising antiprotozoal anticancer and photocatalytic effect and could be further exploited for the development of antiprotozoal and anticancer therapeutics agents.


Assuntos
Laurencia , Nanopartículas Metálicas , Alga Marinha , Cobre/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Polímeros , Óxidos
15.
Exp Ther Med ; 26(1): 327, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37346405

RESUMO

Hepatitis B virus (HBV) causes acute and chronic liver diseases, leading to cirrhosis and hepatocellular carcinoma. Although direct-acting nucleoside analogs, such as lamivudine (LAM), adefovir and famciclovir, are available, emergence of drug-resistance due to mutations in HBV polymerase (POL) restricts their further use. Alternatively, numerous plant products and compounds isolated from plants have been reported to confer anti-HBV efficacies without any sign of resistance in vitro or in vivo. As, flavonoids and alkaloids are the most widely reported antivirals, the anti-HBV activities of the flavonoid acacetin (ACT) and the alkaloid acetyl-ß-carboline (ABC) from the aerial parts of Rhazya stricta were assessed in the present study. Both compounds were isolated from the ethyl acetate fraction of the total methanol extract using column and thin-layer chromatography, and their structures were determined by nuclear magnetic resonance spectroscopy (NMR). Both compounds (at 6.25-50 µg/ml) showed a lack of hepatocytotoxicity in cultured HepG2.2.15 cells. Anti-HBV ELISA [hepatitis B surface antigen (HBsAg) and hepatitis B pre-core-antigen (HBeAg)] on HepG.2.2.15 cells following treatment with selected concentrations (12.5, 25 and 50 µg/ml) of both compounds showed dose- and time-dependent anti-HBV activities. Compared with those in the untreated control at day 5, ACT and ABC (25 µg/ml, each) maximally inhibited HBsAg synthesis by 43.4 and 48.7%, respectively, whilst also maximally inhibiting HBeAg synthesis by 41.2 and 44.2%, respectively, in HepG2.2.15 cells. Comparatively, quercetin and LAM (standards; POL inhibitors) suppressed HBsAg (63.9 and 60.2%, respectively) and HBeAg synthesis (87.1 and 84.3%, respectively) by larger magnitudes. Molecular docking of ACT and ABC structures performed in AutoDock revealed their hydrogen bonding with the drug-sensitive [wild-type (wt)-POL] 'Tyr-Met-Asp-Asp' motif, in addition to the drug-resistant [mutant (mut)-POL] 'Tyr-Ile-Asp-Asp' motif residues of the polymerase binding-pocket, along with other electrostatic interactions. In the wt-POL complex, both compounds showed good interactions with Asp205. In the mut-POL complex, ACT and ABC interacted with Tyr203-Asp205 and Tyr203-Ile204, respectively. In conclusion, to the best of our knowledge, the present study demonstrates anti-HBV efficacies of ACT and ABC in vitro for the first time, endorsed by in silico data. However, further molecular and pharmacological studies are required to validate their pre-clinical therapeutic potential.

16.
Braz J Microbiol ; 43(4): 1476-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031979

RESUMO

We have established methodology for the isolation and characterization of a novel endophytic fungus from the inner bark of medicinal plant Nothapodytes foetida, which produced camptothecin in Sabouraud broth (SB) under shake flask conditions. Camptothecin and its related compounds are at present obtained by extraction from intact plants, but fungal endopytes may be an alternative source of production. In present study we have observed the effect of different nutrient combinations and precursors (tryptophan, tryptamine, geraniol, citral, mevalonic acid and leucine) on the accumulation of camptothecin by endophytic fungus Entrophospora infrequens. The precursors were fed either alone or in combinations (tryptophan and geraniol, tryptophan and citral, tryptophan and mevalonic acid, tryptophan and leucine). The highest camptothecin content was observed in the range of 503 ± 25µg/100g dry cell mass in Sabouraud medium. Camptothecin content in the medium was increased by 2.5 folds by the presence of tryptophan and leucine whereas the production with trytophan was also significantly different from other treatments. Furthermore, the effect of fungal camptothecin on the morphology of human cancer cell lines was also studied. The treated cells showed reduction in size, condensation of nucleus and the protoplasmic extensions were reduced. All these characteristics are found in apoptotic cells.

17.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683744

RESUMO

Aluminum oxide nanoparticles (Al2O3 NPs) were synthesized using a simple, eco-friendly green synthesis approach in an alkaline medium from the extract of grapefruit peel waste. The pre-synthesized, nano-crystalline Al2O3 NPs were characterized by using spectroscopic (UV-vis, FTIR, XRD, and EDX) and microscopic (SEM and TEM) techniques. The formed Al2O3 NPs exhibited a pronounced absorption peak at 278 nm in the UV-vis spectrum. The average particle size of the as-prepared Al2O3 NPs was evaluated to be 57.34 nm, and the atomic percentages of O and Al were found to be 54.58 and 45.54, respectively. The fabricated Al2O3 NPs were evaluated for antioxidant, anti-inflammatory, and immunomodulatory properties. The Al2O3 NPs showed strong antioxidant potential towards all the four tested assays. The anti-inflammatory and immunomodulatory potential of Al2O3 NPs was investigated by measuring the production of nitric oxide and superoxide anion (O2•-), as well as proinflammatory cytokines tumour necrosis factor (TNF-α, IL-6) and inhibition of nuclear factor kappa B (NF- κB). The results revealed that Al2O3 NPs inhibited the production of O2•- (99.4%) at 100 µg mL-1 concentrations and intracellular NO•- (55%), proinflammatory cytokines IL-6 (83.3%), and TNF-α (87.9%) at 50 µg mL-1 concentrations, respectively. Additionally, the Al2O3 NPs inhibited 41.8% of nuclear factor kappa B at 20 µg mL-1 concentrations. Overall, the outcomes of current research studies indicated that Al2O3 NPs possess anti-inflammatory and immunomodulatory properties and could be used to treat chronic and acute anti-inflammatory conditions.

18.
Saudi J Biol Sci ; 29(6): 103297, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35475118

RESUMO

The increased transmissibility and highly infectious nature of the new variant of concern (VOC) that is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and lack of effective therapy need the rapid discovery of therapeutic antivirals against it. The present investigation aimed to identify antiviral compounds that would be effective against SARS-CoV-2 Omicron. In this study, molecular docking experiments were carried out using the recently reported experimental structure of omicron spike protein in complex with human angiotensin-converting enzyme 2 (ACE2) and various antivirals in preclinical and clinical trial studies. Out of 36 tested compounds, Abemaciclib, Dasatinib and Spiperone are the three top-ranked molecules which scored binding energies of -10.08 kcal/mol, -10.06 kcal/mol and -9.54 kcal/mol respectively. Phe338, Asp339, and Asp364 are crucial omicron receptor residues involved in hydrogen bond interactions, while other residues were mostly involved in hydrophobic interactions with the lead molecules. The identified lead compounds also scored well in terms of drug-likeness. Molecular dynamics (MD) simulation, essential dynamics (ED) and entropic analysis indicate the ability of these molecules to modulate the activity of omicron spike protein. Therefore, Abemaciclib, Dasatinib and Spiperone are likely to be viable drug-candidate molecules that can block the interaction between the omicron spike protein and the host cellular receptor ACE2. Though our findings are compelling, more research into these molecules is needed before they can be employed as drugs to treat SARS-CoV-2 omicron infections.

19.
PeerJ ; 10: e13040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282288

RESUMO

Background: This work describes the phytochemical and biological investigation of aerial parts of Abutilon bidentatum Hochst. Of Saudi origin. Methodology: Petroleum ether fraction of ethanolic extract A. bidentatum was fractionated on a silica gel column and further purified with different chromatographic procedures for the isolation of chemical compounds. The chemical structures of all the pure isolated compounds were elucidated by the interpretation of their spectral data using IR, UV, 1H, 13C NMR, and MS spectroscopy and chemical methods (alkaline hydrolysis) as well as comparison with data reported in the literature. The extract and isolated compounds were evaluated for antioxidant, cholinesterase inhibitory, and antimicrobial activities. Results: A new oleanane-type triterpene ester, namely abubidentin A (3) (α, 3ß, 30-trihydroxy-29-carboxy-olean-9(11), 12-diene-3-dotriacontanoate), along with two known compounds: 2-hydroxydocosanoic acid (1) and stigmasta-22-ene-3-ß-ol (2) were isolated from the aerial parts of Abutilon bidentatum Hochst. (Malvaceae). Concerning the biological potential, the abubidentinA displayed antioxidant, cholinesterase inhibitory and antimicrobial activities. AbubidentinA possessed strong antioxidant activity against DPPH and ABTS+ radical scavenging assays. This new triterpene exhibited high inhibition against acetylcholinesterase (IC50 38.13 ± 0.07 µgmL-1) and butyrylcholinesterase (IC50 32.68 ± 0.37 µgmL-1). Abubidentin A displayed promising antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus (125-150 µgmL-1). Conclusion: These findings suggest A. bidentatum can contribute as a source of new biologically active compounds, especially antioxidants and antimicrobial agents.


Assuntos
Anti-Infecciosos , Malvaceae , Triterpenos , Antioxidantes/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Triterpenos/farmacologia , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Malvaceae/química
20.
Nutrients ; 14(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35565759

RESUMO

This study tested the anti-hyperlipidemic, hypoglycemic, hepatoprotective, and anti-inflammatory effects of whole pearl millet grain powder (MPG) and its ethanol extract (MPGethaolE) in obese rats fed a high-fat diet. The rats were divided into eight groups based on the treatments they received: control, high fat diet (HFD), HFD + MGE (25 mg/Kg), HFD + MPGethaolE (50 mg/Kg), HFD + MPGethaolE (100 mg/Kg), HFD + MPG (10%), HFD + MPG (20%), and HFD + MPG (30%). The final body weight, visceral, epididymal fat pads, and the liver weight were significantly decreased, in a dose-dependent manner, in HFD fed rats that were co-administered either the MPG powder or MPGethaolE. In the same line, serum levels of triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein-cholesterol (LDL-c), as well as fasting glucose, insulin, HOMA-IR, and serum levels of lipopolysaccharides (LPS), interleukine-6 (IL-6), interleukine-10 (IL-10), C-reactive protein (CRP), tumor necrosis factor (TNF-α), and adiponectin were progressively decreased while serum levels of high-density lipoproteins (HDL-c) were significantly increased when increasing the doses of both treatments. In conclusion, both the raw powder and ethanolic extract of MP have a comparative dose-dependent anti-obesity, hypoglycemic, hypolipidemic, anti-inflammatory, and anti-steatotic in HFD-fed rats.


Assuntos
Hiperlipidemias , Pennisetum , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Etanol , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Pós , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA