RESUMO
A functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV. Here, we report the generation of a knock-in mouse line carrying the HSAN IV TrkAR649W mutation. First, by in vitro biochemical and biophysical analyses, we show that the pathological R649W mutation leads to kinase-inactive TrkA also affecting its membrane dynamics and trafficking. In agreement with the HSAN IV human phenotype, TrkAR649W/m mice display a lower response to thermal and chemical noxious stimuli, correlating with reduced skin innervation, in addition to decreased sweating in comparison to TrkAh/m controls. Moreover, the R649W mutation decreases anxiety-like behavior and compromises cognitive abilities, by impairing spatial-working and social memory. Our results further uncover unexplored roles of TrkA in thermoregulation and sociability. In addition to accurately recapitulating the clinical manifestations of HSAN IV patients, our findings contribute to clarifying the involvement of the NGF-TrkA system in pain sensation.
Assuntos
Modelos Animais de Doenças , Neuropatias Hereditárias Sensoriais e Autônomas , Receptor trkA , Humanos , Animais , Camundongos , Mutação , Receptor trkA/genética , Técnicas de Introdução de Genes , Fator de Crescimento Neural/metabolismo , Fosforilação , Genes Letais , Dor/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Pele/metabolismo , Pele/patologia , Sistema Nervoso Simpático/metabolismo , Hipo-Hidrose/metabolismo , Comportamento AnimalRESUMO
BACKGROUND: Labeling efficiency is a crucial parameter in fluorescence applications, especially when studying biomolecular interactions. Current approaches for estimating the yield of fluorescent labeling have critical drawbacks that usually lead them to be inaccurate or not quantitative. RESULTS: We present a method to quantify fluorescent-labeling efficiency that addresses the critical issues marring existing approaches. The method operates in the same conditions of the target experiments by exploiting a ratiometric evaluation with two fluorophores used in sequential reactions. We show the ability of the protocol to extract reliable quantification for different fluorescent probes, reagents concentrations, and reaction timing and to optimize labeling performance. As paradigm, we consider the labeling of the membrane-receptor TrkA through 4'-phosphopantetheinyl transferase Sfp in living cells, visualizing the results by TIRF microscopy. This investigation allows us to find conditions for demanding single and multi-color single-molecule studies requiring high degrees of labeling. CONCLUSIONS: The developed method allows the quantitative determination and the optimization of staining efficiency in any labeling strategy based on stable reactions.
Assuntos
Técnicas de Cultura de Células , Corantes Fluorescentes , Microscopia , Coloração e RotulagemRESUMO
The p75 neurotrophin (NT) receptor (p75NTR) plays a crucial role in balancing survival-versus-death decisions in the nervous system. Yet, despite 2 decades of structural and biochemical studies, a comprehensive, accepted model for p75NTR activation by NT ligands is still missing. Here, we present a single-molecule study of membrane p75NTR in living cells, demonstrating that the vast majority of receptors are monomers before and after NT activation. Interestingly, the stoichiometry and diffusion properties of the wild-type (wt) p75NTR are almost identical to those of a receptor mutant lacking residues previously believed to induce oligomerization. The wt p75NTR and mutated (mut) p75NTR differ in their partitioning in cholesterol-rich membrane regions upon nerve growth factor (NGF) stimulation: We argue that this is the origin of the ability of wt p75NTR , but not of mut p75NTR, to mediate immature NT (proNT)-induced apoptosis. Both p75NTR forms support proNT-induced growth cone retraction: We show that receptor surface accumulation is the driving force for cone collapse. Overall, our data unveil the multifaceted activity of the p75NTR monomer and let us provide a coherent interpretative frame of existing conflicting data in the literature.
Assuntos
Apoptose/fisiologia , Cones de Crescimento/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Sistema Nervoso/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso/genética , Receptor de Fator de Crescimento Neural/genéticaRESUMO
Pleural mesothelioma (PM) is an aggressive tumor with few therapeutic options. Although patients with epithelioid PM (ePM) survive longer than non-epithelioid PM (non-ePM), heterogeneity of tumor response in ePM is observed. The role of the tumor immune microenvironment (TIME) in the development and progression of PM is currently considered a promising biomarker. A few studies have used high-throughput technologies correlated with TIME evaluation and morphologic and clinical data. This study aimed to identify different morphological, immunohistochemical, and transcriptional profiles that could potentially predict the outcome. A retrospective multicenter cohort of 129 chemonaive PM patients was recruited. Tissue slides were reviewed by dedicated pathologists for histotype classification and immunophenotype of tumor-infiltrating lymphocytes (TILs) and lymphoid aggregates or tertiary lymphoid structures (TLS). ePM (n = 99) survivors were further classified into long (>36 months) or short (<12 months) survivors. RNAseq was performed on a subset of 69 samples. Distinct transcriptional profiling in long and short ePM survivors was found. An inflammatory background with a higher number of B lymphocytes and a prevalence of TLS formations were detected in long compared to short ePM survivors. These results suggest that B cell infiltration could be important in modulating disease aggressiveness, opening a pathway for novel immunotherapeutic approaches.
Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Estruturas Linfoides Terciárias , Humanos , Mesotelioma/genética , Neoplasias Pleurais/genética , Sobreviventes , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral/genéticaRESUMO
Lysosomes are not merely degradative organelles but play a central role in nutrient sensing, metabolism and cell-growth regulation. Our ability to study their function in living cells strictly relies on the use of lysosome-specific fluorescent probes tailored to optical microscopy applications. Still, no report thus far quantitatively analyzed the effect of labeling strategies/procedures on lysosome properties in live cells. We tackle this issue by a recently developed spatiotemporal fluctuation spectroscopy strategy that extracts structural (size) and dynamic (diffusion) properties directly from imaging, with no a-priori knowledge of the system. We highlight hitherto neglected alterations of lysosome properties upon labeling. In particular, we demonstrate that Lipofectamine reagents, used to transiently express lysosome markers fused to fluorescent proteins (FPs) (e.g. LAMP1-FP or CD63-FP), irreversibly alter the organelle structural identity, inducing a â¼2-fold increase of lysosome average size. The organelle structural identity is preserved, instead, if electroporation or Effectene are used as transfection strategies, provided that the expression levels of the recombinant protein marker are kept low. This latter condition can be achieved also by generating cell lines stably expressing the desired FP-tagged marker. Reported results call into question the interpretation of a massive amount of data collected so far using fluorescent protein markers and suggest useful guidelines for future studies.
Assuntos
Proteínas de Membrana Lisossomal/genética , Lisossomos/metabolismo , Imagem Óptica/estatística & dados numéricos , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem/métodos , Tetraspanina 30/genética , Eletroporação/métodos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Genes Reporter , Células HeLa , Humanos , Lipídeos/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Imagem Óptica/métodos , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência/métodos , Coloração e Rotulagem/normas , Tetraspanina 30/metabolismo , TransfecçãoRESUMO
Although clinical antitumor activity of Tumor Treating Fields (TTFields) has been reported in malignant pleural mesothelioma (MPM) patients, the mechanisms behind the different selectivity displayed by the various MPM histotypes to this physical therapy has not been elucidated yet. Taking advantage of the development of well characterized human MPM cell lines derived from pleural effusion and/or lavages of patients' thoracic cavity, we investigated the biological effects of TTFields against these cells, representative of epithelioid, biphasic, and sarcomatoid histotypes. Growth inhibition and cell cycle perturbations caused by TTFields were investigated side by side with RNA-Seq analyses at different exposure times to identify pathways involved in cell response to treatment. We observed significant differences of response to TTFields among the cell lines. Cell cycle analysis revealed that the most sensitive cells (epithelioid CD473) were blocked in G2M phase followed by formation of polyploid cells. The least sensitive cells (sarcomatoid CD60) were only slightly affected by TTFields with a general delay in all cell cycle phases. Apoptosis was present in all samples, but while epithelioid cell death was already observed during the first 24 h of treatment, sarcomatoid cells needed longer times before they engaged apoptotic pathways. RNA-Seq experiments demonstrated that TTFields induced a transcriptional response already detectable at early time points (8 h). The number of differentially expressed genes was higher in CD473 than in CD60 cells, involving several pathways, such as those pertinent to cell cycle checkpoints, DNA repair, and histone modifications. Our data provide further support to the notion that the antitumor effects of TTFields are not simply related to a non-specific reaction to a physical stimulus, but are dependent on the biological background of the cells and the particular sensitivity to TTFields observed in epithelioid MPM cells is associated with a higher transcriptional activity than that observed in sarcomatoid models.
Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Mesotelioma/genética , Mesotelioma/terapia , Neoplasias Pleurais/patologiaRESUMO
We address the contribution of kinase domain structure and catalytic activity to membrane trafficking of TrkA receptor tyrosine kinase. We conduct a systematic comparison between TrkA-wt, an ATP-binding defective mutant (TrkA-K544N) and other mutants displaying separate functional impairments of phosphorylation, ubiquitination, or recruitment of intracellular partners. We find that only K544N mutation endows TrkA with restricted membrane mobility and a substantial increase of cell surface pool already in the absence of ligand stimulation. This mutation is predicted to drive a structural destabilization of the αC helix in the N-lobe by molecular dynamics simulations, and enhances interactions with elements of the actin cytoskeleton. On the other hand, a different TrkA membrane immobilization is selectively observed after NGF stimulation, requires both phosphorylation and ubiquitination to occur, and is most probably related to the signaling abilities displayed by the wt but not mutated receptors. In conclusion, our results allow to distinguish two different TrkA membrane immobilization modes and demonstrate that not all kinase-inactive mutants display identical membrane trafficking.
Assuntos
Receptor trkA/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fator de Crescimento Neural/farmacologia , Fosforilação/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Receptor trkA/química , Receptor trkA/genética , Ubiquitinação/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
The set-up of an advanced imaging experiment requires a careful selection of suitable labeling strategies and fluorophores for the tagging of the molecules of interest. Here we provide an experimental workflow to allow evaluation of fluorolabeling performance of the chemical tags target of phosphopantetheinyl transferase enzymes (PPTases), once inserted in the sequence of different proteins of interest. First, S6 peptide tag was fused to three different single-pass transmembrane proteins (the tyrosine receptor kinases TrkA and VEGFR2 and the tumor necrosis factor receptor p75NTR), providing evidence that all of them can be conveniently albeit differently labeled. Moreover, we chose the S6-tagged TrkA construct to test eight different organic fluorophores for the PPTase labeling of membrane receptors in living cells. We systematically compared their non-specific internalization when added to a S6-tag negative cell culture, the percentage of S6-TrkA expressing cells effectively labeled and the relative mean fluorescence intensity, their photostability upon conjugation, and ratio of specific (cellular) versus background (glass-adhered) signal. This allowed to identify which fluorophores are actually recommended for these labeling reactions. Finally, we compared the PPTase labeling of a purified, YBBR-tagged Nerve Growth Factor with two differently charged organic dyes. We detected some batch-to-batch variability in the labeling yield, regardless of the fluorophore used. However, upon purification of the fluorescent species and incubation with living primary DRG neurons, no significant difference could be appreciated in both internalization and axonal transport of the labeled neurotrophins.
RESUMO
We describe here a versatile methodological platform to achieve site-directed and stoichiometry-controlled labeling of neurotrophins and their receptors with various probes, ranging from biotin to small organic dyes. This labeling method works in vitro on purified neurotrophins as well as in a living cell context, where it achieves selective labeling of surface-exposed neurotrophin receptors. Here, we list all experimental details of our labeling protocols, along with examples of the wide range of applications in which these can be used.