RESUMO
The segregation of the cortical mantle into cytoarchitectonic areas provides a structural basis for the specialization of different brain regions. In vivo neuroimaging experiments can be linked to this postmortem cytoarchitectonic parcellation via Julich-Brain. This atlas embeds probabilistic maps that account for inter-individual variability in the localization of cytoarchitectonic areas in the reference spaces targeted by spatial normalization. We built a framework to improve the alignment of architectural areas across brains using cortical folding landmarks. This framework, initially designed for in vivo imaging, was adapted to postmortem histological data. We applied this to the first 14 brains used to establish the Julich-Brain atlas to infer a refined atlas with more focal probabilistic maps. The improvement achieved is significant in the primary regions and some of the associative areas. This framework also provides a tool for exploring the relationship between cortical folding patterns and cytoarchitectonic areas in different cortical regions to establish new landmarks in the remainder of the cortex.
Assuntos
Encéfalo , Neuroimagem , Autopsia , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodosRESUMO
The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.
Assuntos
Lobo Temporal , Humanos , Lobo Temporal/patologia , Neuroanatomia/métodos , Masculino , Giro Para-Hipocampal/patologia , Giro Para-Hipocampal/diagnóstico por imagem , Feminino , Idoso , Córtex Entorrinal/patologia , Córtex Entorrinal/anatomia & histologia , Laboratórios , Idoso de 80 Anos ou maisRESUMO
Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.
Assuntos
Encéfalo/metabolismo , Comunicação Celular/genética , Córtex Cerebral/metabolismo , Receptores de Neurotransmissores/genética , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/ultraestrutura , Humanos , Receptores de AMPA/genética , Receptores de AMPA/isolamento & purificação , Receptores de GABA-A/genética , Receptores de GABA-A/isolamento & purificação , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/isolamento & purificação , Receptores de Neurotransmissores/química , Receptores de Neurotransmissores/classificação , Receptores de Neurotransmissores/ultraestruturaRESUMO
While the analysis of gait and balance can be an important indicator of age- or disease-related changes, it remains unclear if repeated performance of gait and balance tests in healthy adults leads to habituation effects, if short-term gait and balance training can improve gait and balance performance, and whether the placement of wearable sensors influences the measurement accuracy. Healthy adults were assessed before and after performing weekly gait and balance tests over three weeks by using a force plate, motion capturing system and smartphone. The intervention group (n = 25) additionally received a home-based gait and balance training plan. Another sample of healthy adults (n = 32) was assessed once to analyze the impact of sensor placement (lower back vs. lower abdomen) on gait and balance analysis. Both the control and intervention group exhibited improvements in gait/stance. However, the trends over time were similar for both groups, suggesting that targeted training and repeated task performance equally contributed to the improvement of the measured variables. Since no significant differences were found in sensor placement, we suggest that a smartphone used as a wearable sensor could be worn both on the lower abdomen and the lower back in gait and balance analyses.
Assuntos
Marcha , Equilíbrio Postural , Smartphone , Dispositivos Eletrônicos Vestíveis , Humanos , Equilíbrio Postural/fisiologia , Marcha/fisiologia , Masculino , Adulto , Feminino , Adulto Jovem , Voluntários SaudáveisRESUMO
Neurotransmitter receptors are key molecules in signal transmission, their alterations are associated with brain dysfunction. Relationships between receptors and their corresponding genes are poorly understood, especially in humans. We combined in vitro receptor autoradiography and RNA sequencing to quantify, in the same tissue samples (7 subjects), the densities of 14 receptors and expression levels of their corresponding 43 genes in the Cornu Ammonis (CA) and dentate gyrus (DG) of human hippocampus. Significant differences in receptor densities between both structures were found only for metabotropic receptors, whereas significant differences in RNA expression levels mostly pertained ionotropic receptors. Receptor fingerprints of CA and DG differ in shapes but have similar sizes; the opposite holds true for their "RNA fingerprints", which represent the expression levels of multiple genes in a single area. In addition, the correlation coefficients between receptor densities and corresponding gene expression levels vary widely and the mean correlation strength was weak-to-moderate. Our results suggest that receptor densities are not only controlled by corresponding RNA expression levels, but also by multiple regionally specific post-translational factors.
Assuntos
Hipocampo , Receptores de Neurotransmissores , Humanos , Hipocampo/fisiologia , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , RNA/metabolismo , AutorradiografiaRESUMO
Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D, and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness from motor to frontal association cortices. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately, functional neuroanatomy.
Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de ComputaçãoRESUMO
Brain areas show specific cellular, molecular, and gene expression patterns that are linked to function, but their precise relationships are largely unknown. To unravel these structure-function relationships, a combined analysis of 53 neurotransmitter receptor genes, receptor densities of six transmitter systems and cytoarchitectonic data of the auditory, somatosensory, visual, motor systems was conducted. Besides covariation of areal gene expression with receptor density, the study reveals specific gene expression patterns in functional systems, which are most prominent for the inhibitory GABAA and excitatory glutamatergic NMDA receptors. Furthermore, gene expression-receptor relationships changed in a systematic manner according to information flow from primary to higher associative areas. The findings shed new light on the relationship of anatomical, functional, and molecular and transcriptomic principles of cortical segregation towards a more comprehensive understanding of human brain organization.
Assuntos
Encéfalo , Transcriptoma , Encéfalo/metabolismo , Mapeamento Encefálico , Humanos , Receptores de Neurotransmissores/metabolismoRESUMO
The human insular cortex supports multifunctional integration including interoceptive, sensorimotor, cognitive and social-emotional processing. Different concepts of the underlying microstructure have been proposed over more than a century. However, a 3D map of the cytoarchitectonic segregation of the insula in standard reference space, that could be directly linked to neuroimaging experiments addressing different cognitive tasks, is not yet available. Here we analyzed the middle posterior and dorsal anterior insula with image analysis and a statistical mapping procedure to delineate cytoarchitectonic areas in ten human postmortem brains. 3D-probability maps of seven new areas with granular (Ig3, posterior), agranular (Ia1, posterior) and dysgranular (Id2-Id6, middle to dorsal anterior) cytoarchitecture have been calculated to represent the new areas in stereotaxic space. A hierarchical cluster analysis based on cytoarchitecture resulted in three distinct clusters in the superior posterior, inferior posterior and dorsal anterior insula, providing deeper insights into the structural organization of the insula. The maps are openly available to support future studies addressing relations between structure and function in the human insula.
Assuntos
Córtex Cerebral , Processamento de Imagem Assistida por Computador , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Neuroimagem , ProbabilidadeRESUMO
The Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material. TVB cloud services facilitate reproducible online collaboration and discovery of data assets, models, and software embedded in scalable and secure workflows, a precondition for research on large cohort data sets, better generalizability, and clinical translation.
Assuntos
Encéfalo , Computação em Nuvem , Animais , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , SoftwareRESUMO
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Imageamento por Ressonância Magnética , Transtornos Mentais , Transtornos do Neurodesenvolvimento , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Estudos Multicêntricos como Assunto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologiaRESUMO
The Human Brain Project (HBP) is a European flagship project with a 10-year horizon aiming to understand the human brain and to translate neuroscience knowledge into medicine and technology. To achieve such aims, the HBP explores the multilevel complexity of the brain in space and time; transfers the acquired knowledge to brain-derived applications in health, computing, and technology; and provides shared and open computing tools and data through the HBP European brain research infrastructure. We discuss how the HBP creates a transdisciplinary community of researchers united by the quest to understand the brain, with fascinating perspectives on societal benefits.
Assuntos
Encéfalo/anatomia & histologia , Informática Médica/métodos , Neurociências/métodos , Tecnologia/métodos , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Informática Médica/tendências , Neurociências/tendências , Reprodutibilidade dos Testes , Tecnologia/tendênciasRESUMO
There are currently no standard methods for evaluating gait and balance performance at home. Smartphones include acceleration sensors and may represent a promising and easily accessible tool for this purpose. We performed an interventional feasibility study and compared a smartphone-based approach with two standard gait analysis systems (force plate and motion capturing systems). Healthy adults (n = 25, 44.1 ± 18.4 years) completed two laboratory evaluations before and after a three-week gait and balance training at home. There was an excellent agreement between all systems for stride time and cadence during normal, tandem and backward gait, whereas correlations for gait velocity were lower. Balance variables of both standard systems were moderately intercorrelated across all stance tasks, but only few correlated with the corresponding smartphone measures. Significant differences over time were found for several force plate and mocap system-obtained gait variables of normal, backward and tandem gait. Changes in balance variables over time were more heterogeneous and not significant for any system. The smartphone seems to be a suitable method to measure cadence and stride time of different gait, but not balance, tasks in healthy adults. Additional optimizations in data evaluation and processing may further improve the agreement between the analysis systems.
Assuntos
Marcha , Smartphone , Adulto , Humanos , Fenômenos Mecânicos , Equilíbrio PosturalRESUMO
For developing a detailed network model of the brain based on image reconstructions, it is necessary to spatially resolve crossing nerve fibers. The accuracy hereby depends on many factors, including the spatial resolution of the imaging technique. 3D Polarized Light Imaging (3D-PLI) allows the three-dimensional reconstruction of nerve fiber tracts in whole brain sections with micrometer in-plane resolution, but leaves uncertainties in pixels containing crossing fibers. Here we introduce Scattered Light Imaging (SLI) to resolve the substructure of nerve fiber crossings. The measurement is performed on the same unstained histological brain sections as in 3D-PLI. By illuminating the brain sections from different angles and measuring the transmitted (scattered) light under normal incidence, light intensity profiles are obtained that are characteristic for the underlying brain tissue structure. We have developed a fully automated evaluation of the intensity profiles, allowing the user to extract various characteristics, like the individual directions of in-plane crossing nerve fibers, for each image pixel at once. We validate the reconstructed nerve fiber directions against results from previous simulation studies, scatterometry measurements, and fiber directions obtained from 3D-PLI. We demonstrate in different brain samples (human optic tracts, vervet monkey brain, rat brain) that the 2D fiber directions can be reliably reconstructed for up to three crossing nerve fiber bundles in each image pixel with an in-plane resolution of up to 6.5 µm. We show that SLI also yields reliable fiber directions in brain regions with low 3D-PLI signals coming from regions with a low density of myelinated nerve fibers or out-of-plane fibers. This makes Scattered Light Imaging a promising new imaging technique, providing crucial information about the organization of crossing nerve fibers in the brain.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Difusão Dinâmica da Luz/normas , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Fibras Nervosas Mielinizadas/patologia , Idoso , Animais , Chlorocebus aethiops , Difusão Dinâmica da Luz/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Especificidade da EspécieRESUMO
Human brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures and observer-independent methods are prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between. The model learns to create all missing annotations in between with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain areas, introducing CNNs to identify borders of brain areas.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Bases de Dados Factuais , Técnicas Histológicas/métodos , HumanosRESUMO
In rodents, gene-expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3 , GABAergic GABAA (including benzodiazepine binding sites), GABAB , dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal-ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB . For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3 , GABAA , D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal-ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.
Assuntos
Hipocampo , Receptores de Ácido Caínico , Animais , Autorradiografia , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Receptores de Ácido Caínico/metabolismoRESUMO
Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.
RESUMO
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (ß = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (ß = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
Assuntos
Transtorno Autístico/genética , Gânglios da Base/patologia , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA/genética , Deficiência Intelectual/genética , Adulto , Transtorno do Espectro Autista/genética , Encéfalo/patologia , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Bases de Dados Factuais , Feminino , Globo Pálido/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Tamanho do Órgão/genética , Putamen/patologia , Esquizofrenia/genéticaRESUMO
The hippocampus is a plastic region and highly susceptible to ageing and dementia. Previous studies explicitly imposed a priori models of hippocampus when investigating ageing and dementia-specific atrophy but led to inconsistent results. Consequently, the basic question of whether macrostructural changes follow a cytoarchitectonic or functional organization across the adult lifespan and in age-related neurodegenerative disease remained open. The aim of this cross-sectional study was to identify the spatial pattern of hippocampus differentiation based on structural covariance with a data-driven approach across structural MRI data of large cohorts (n = 2594). We examined the pattern of structural covariance of hippocampus voxels in young, middle-aged, elderly, mild cognitive impairment and dementia disease samples by applying a clustering algorithm revealing differentiation in structural covariance within the hippocampus. In all the healthy and in the mild cognitive impaired participants, the hippocampus was robustly divided into anterior, lateral and medial subregions reminiscent of cytoarchitectonic division. In contrast, in dementia patients, the pattern of subdivision was closer to known functional differentiation into an anterior, body and tail subregions. These results not only contribute to a better understanding of co-plasticity and co-atrophy in the hippocampus across the lifespan and in dementia, but also provide robust data-driven spatial representations (i.e. maps) for structural studies.
Assuntos
Bases de Dados Factuais/tendências , Demência/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Longevidade/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto , Idoso , Atrofia , Estudos de Coortes , Demência/patologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/patologia , Adulto JovemRESUMO
Brain aging is highly variable and represents a challenge to delimit aging from disease processes. Moreover, genetic factors may influence both aging and disease. Here we focused on this issue and investigated effects of multiple genetic loci previously identified to be associated with late-onset Alzheimer's disease (AD) on brain structure of older adults from a population sample. We calculated a genetic risk score (GRS) using genome-wide significant single-nucleotide polymorphisms from genome-wide association studies of AD and tested its effect on cortical thickness (CT). We observed a common pattern of cortical thinning (right inferior frontal, left posterior temporal, medial occipital cortex). To identify CT changes by specific biological processes, we subdivided the GRS effect according to AD-associated pathways and performed follow-up analyses. The common pattern from the main analysis was further differentiated by pathway-specific effects yielding a more bilateral pattern. Further findings were located in the superior parietal and mid/anterior cingulate regions representing 2 unique pathway-specific patterns. All patterns, except the superior parietal pattern, were influenced by apolipoprotein E. Our step-wise approach revealed atrophy patterns that partially resembled imaging findings in early stages of AD. Our study provides evidence that genetic burden for AD contributes to structural brain variability in normal aging.
Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Idoso , Doença de Alzheimer/diagnóstico por imagem , Atrofia/diagnóstico por imagem , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Healthy aging has been associated with a decrease in functional network specialization. Importantly, variability of alterations of functional connectivity is especially high across older adults. Whole-brain functional network reorganization, though, and its impact on cognitive performance within particularly the older generation is still a matter of debate. We assessed resting state functional connectivity (RSFC) in 772 older adults (55-85 years, 421 males) using a graph-theoretical approach. Results show overall age-related increases of between- and decreases of within-network RSFC. With similar phenomena observed in young to middle-aged adults, i.e. that RSFC reorganizes towards more pronounced functional network integration, the current results amend such evidence for the old age. The results furthermore indicate that RSFC reorganization in older adults particularly pertain to early sensory networks (e.g. visual and sensorimotor network). Importantly, RSFC differences of these early sensory networks were found to be a relevant mediator in terms of the age-related cognitive performance differences. Further, we found systematic sex-related network differences with females showing patterns of more segregation (i.e. default mode and ventral attention network) and males showing a higher integrated network system (particularly for the sensorimotor network). These findings underpin the notion of sex-related connectivity differences, possibly facilitating sex-related behavioral functioning.