Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Oncol ; 58(12): 1775-1782, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31556764

RESUMO

Background: The aim of this study was to compare adaptive intensity modulated proton therapy (IMPT) robustness and organ sparing capabilities with that of adaptive volumetric arc photon therapy (VMAT).Material and methods: Eighteen lung cancer patients underwent a planning 4DCT (p4DCT) and 5 weekly repeated 4DCT (r4DCT) scans. Target volumes and organs at risk were manually delineated on the three-dimensional (3D) average scans of the p4DCT (av_p4DCT) and of the r4DCT scans (av_r4DCT). Planning target volume (PTV)-based VMAT plans and internal clinical target volume (ICTV)-based robust IMPT plans were optimized in 3D on the av_p4DCT and re-calculated on the av_r4DCTs. Re-planning on av_r4DCTs was performed when indicated and accumulated doses were evaluated on the av_p4DCT.Results: Adaptive VMAT and IMPT resulted in adequate ICTV coverage on av_r4DCT in all patients and adequate accumulated-dose ICTV coverage on av_p4DCT in 17/18 patients (due to a shrinking target in one patient). More frequent re-planning was needed for IMPT than for VMAT. The average mean heart dose reduction with IMPT compared with VMAT was 4.6 Gy (p = .001) and it was >5 Gy for five patients (6, 7, 8, 15, and 22 Gy). The average mean lung dose reduction was 3.2 Gy (p < .001). Significant reductions in heart and lung V5 Gy were observed with IMPT.Conclusion: Robust-planned IMPT required re-planning more often than VMAT but resulted in similar accumulated ICTV coverage. With IMPT, heart and lung mean dose values and low dose regions were significantly reduced. Substantial cardiac sparing was obtained in a subgroup of five patients (28%).


Assuntos
Neoplasias Pulmonares/radioterapia , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Carcinoma de Células Grandes/diagnóstico por imagem , Carcinoma de Células Grandes/radioterapia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Esôfago/diagnóstico por imagem , Esôfago/efeitos da radiação , Feminino , Tomografia Computadorizada Quadridimensional , Coração/diagnóstico por imagem , Coração/efeitos da radiação , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/diagnóstico por imagem
2.
Radiother Oncol ; 157: 210-218, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545257

RESUMO

PURPOSE: Compared to volumetric modulated arc therapy (VMAT), clinical benefits are anticipated when treating thoracic tumours with intensity-modulated proton therapy (IMPT). However, the current concern of plan robustness as a result of motion hampers its wide clinical implementation. To define an optimal protocol to treat lung and oesophageal cancers, we present a comprehensive evaluation of IMPT planning strategies, based on patient 4DCTs and machine log files. MATERIALS AND METHODS: For ten lung and ten oesophageal cancer patients, a planning 4DCT and weekly repeated 4DCTs were collected. For these twenty patients, the CTV volume and motion were assessed based on the 4DCTs. In addition to clinical VMAT plans, layered rescanned 3D and 4D robust optimised IMPT plans (IMPT_3D and IMPT_4D respectively) were generated, and approved clinically, for all patients. The IMPT plans were then delivered in dry runs at our proton facility to obtain log files, and subsequently evaluated through our 4D robustness evaluation method (4DREM). With this method, for each evaluated plan, fourteen 4D accumulated scenario doses were obtained, representing 14 possible fractionated treatment courses. RESULTS: From VMAT to IMPT_3D, nominal Dmean(lungs-GTV) decreased 2.75 ± 0.56 GyRBE and 3.76 ± 0.92 GyRBE over all lung and oesophageal cancer patients, respectively. A more pronounced reduction was verified for Dmean(heart): 5.38 ± 7.36 GyRBE (lung cases) and 9.51 ± 2.25 GyRBE (oesophagus cases). Target coverage robustness of IMPT_3D was sufficient for 18/20 patients. Averaged dose in critical structures over all 4DREM scenarios changed only slightly for both IMPT_3D and IMPT_4D. Relative to IMPT_3D, no gain in IMPT_4D was observed. CONCLUSION: The dosimetric superiority of IMPT over VMAT has been established. For most thoracic tumours, our IMPT_3D planning protocol showed to be robust and clinically suitable. Nevertheless, accurate patient positioning and adapting to anatomical variations over the course of treatment remain compulsory.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Radiother Oncol ; 151: 66-72, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663538

RESUMO

BACKGROUND AND PURPOSE: Intensity-modulated proton therapy (IMPT) is expected to result in clinical benefits by lowering radiation dose to organs-at-risk (OARs). However, there are concerns about plan robustness due to motion. To address this uncertainty we evaluated the robustness of IMPT compared to the widely clinically used volumetric modulated arc therapy (VMAT) on weekly repeated computed tomographies (CT). MATERIALS AND METHODS: 19 patients with oesophageal cancer were evaluated. IMPT and VMAT plans were created on a planning 4-Dimensional CT (p4DCT) and evaluated on weekly repeated 4DCTs (r4DCT). In case of inadequate target coverage or unacceptable high dose to normal tissue, re-planning was performed. Dose distributions of the r4DCTs were warped to p4DCT, resulting in an estimated actual given dose (EAGD). RESULTS: Compared to VMAT, IMPT resulted in significantly lowered dose to heart, lungs, spleen, liver and kidneys. For IMPT, target coverage was adequate (after max 1 replanning) in 17/19 cases. In two cases target coverage remained insufficient. However, in one of these patients the summed dose was insufficient (due to tumor shrinkage) while weekly coverage was adequate. For the other patient the target coverage was also insufficient by VMAT, due to large anatomical changes during treatment. For VMAT, adequate target coverage was achieved in 18/19 cases without re-planning. However, for reasons of high OAR dose re-planning was required in two cases. CONCLUSION: IMPT reduces the dose to OARs significantly, while achieving adequate target coverage in the majority of patients. Re-planning was necessary for both IMPT and VMAT due to anatomical changes.


Assuntos
Neoplasias Esofágicas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias Esofágicas/radioterapia , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA