Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552880

RESUMO

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.

2.
Gastroenterology ; 164(7): 1248-1260, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849086

RESUMO

BACKGROUND & AIMS: Alcohol disturbs hepatic lipid synthesis and transport, but the role of lipid dysfunction in alcohol-related liver disease (ALD) is unclear. In this biopsy-controlled, prospective, observational study, we characterized the liver and plasma lipidomes in patients with early ALD. METHODS: We performed mass spectrometry-based lipidomics of paired liver and plasma samples from 315 patients with ALD and of plasma from 51 matched healthy controls. We associated lipid levels with histologic fibrosis, inflammation, and steatosis with correction for multiple testing and adjustment for confounders. We further investigated sphingolipid regulation by means of quantitative real-time polymerase chain reaction sequencing of microRNA, prediction of liver-related events, and tested causality with Mendelian randomization. RESULTS: We detected 198 lipids in the liver and 236 lipids in the circulation from 18 lipid classes. Most sphingolipids (sphingomyelins and ceramides) and phosphocholines were co-down-regulated in both liver and plasma, where lower abundance correlated with higher fibrosis stage. Sphingomyelins showed the most pronounced negative correlation to fibrosis, mirrored by negative correlations in both liver and plasma with hepatic inflammation. Reduced sphingomyelins predicted future liver-related events. This seemed to be characteristic of "pure ALD," as sphingomyelin levels were higher in patients with concomitant metabolic syndrome and ALD/nonalcoholic fatty liver disease overlap. Mendelian randomization in FinnGen and UK Biobanks indicated ALD as the cause of low sphingomyelins, and alcohol use disorder did not correlate with genetic susceptibility to low sphingomyelin levels. CONCLUSIONS: Alcohol-related liver fibrosis is characterized by selective and progressive lipid depletion in liver and blood, particularly sphingomyelins, which also associates with progression to liver-related events.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Esfingomielinas/metabolismo , Estudos Prospectivos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/patologia , Etanol/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Inflamação/metabolismo
3.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007856

RESUMO

Gene expression dictates fundamental cellular processes and its de-regulation leads to pathological conditions. A key contributor to the fine-tuning of gene expression is Dicer, an RNA-binding protein (RBPs) that forms complexes and affects transcription by acting at the post-transcriptional level via the targeting of mRNAs by Dicer-produced small non-coding RNAs. This review aims to present the contribution of Dicer protein in a wide spectrum of human pathological conditions, including cancer, neurological, autoimmune, reproductive and cardiovascular diseases, as well as viral infections. Germline mutations of Dicer have been linked to Dicer1 syndrome, a rare genetic disorder that predisposes to the development of both benign and malignant tumors, but the exact correlation of Dicer protein expression within the different cancer types is unclear, and there are contradictions in the data. Downregulation of Dicer is related to Geographic atrophy (GA), a severe eye-disease that is a leading cause of blindness in industrialized countries, as well as to psychiatric and neurological diseases such as depression and Parkinson's disease, respectively. Both loss and upregulation of Dicer protein expression is implicated in severe autoimmune disorders, including psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple sclerosis and autoimmune thyroid diseases. Loss of Dicer contributes to cardiovascular diseases and causes defective germ cell differentiation and reproductive system abnormalities in both sexes. Dicer can also act as a strong antiviral with a crucial role in RNA-based antiviral immunity. In conclusion, Dicer is an essential enzyme for the maintenance of physiology due to its pivotal role in several cellular processes, and its loss or aberrant expression contributes to the development of severe human diseases. Further exploitation is required for the development of novel, more effective Dicer-based diagnostic and therapeutic strategies, with the goal of new clinical benefits and better quality of life for patients.


Assuntos
RNA Helicases DEAD-box/genética , MicroRNAs/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Ribonuclease III/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Diferenciação Celular/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Viroses/genética , Viroses/terapia
4.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503341

RESUMO

Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome's stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs' fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.


Assuntos
Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica , Interferência de RNA , Complexo de Inativação Induzido por RNA/genética , Animais , Doenças Autoimunes/tratamento farmacológico , Fatores de Iniciação em Eucariotos/metabolismo , Inativação Gênica , Humanos , Infertilidade/metabolismo , Neoplasias/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Neurônios/metabolismo , Obesidade/metabolismo , Conformação Proteica , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo
5.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875794

RESUMO

Urinary bladder cancer is a common malignancy, being characterized by substantial patient mortality and management cost. Its high somatic-mutation frequency and molecular heterogeneity usually renders tumors refractory to the applied regimens. Hitherto, methotrexate-vinblastine-adriamycin-cisplatin and gemcitabine-cisplatin represent the backbone of systemic chemotherapy. However, despite the initial chemosensitivity, the majority of treated patients will eventually develop chemoresistance, which severely reduces their survival expectancy. Since chromatin regulation genes are more frequently mutated in muscle-invasive bladder cancer, as compared to other epithelial tumors, targeted therapies against chromatin aberrations in chemoresistant clones may prove beneficial for the disease. "Acetyl-chromatin" homeostasis is regulated by the opposing functions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The HDAC/SIRT (super-)family contains 18 members, which are divided in five classes, with each family member being differentially expressed in normal urinary bladder tissues. Since a strong association between irregular HDAC expression/activity and tumorigenesis has been previously demonstrated, we herein attempt to review the accumulated published evidences that implicate HDACs/SIRTs as critical regulators in urothelial bladder cancer. Moreover, the most extensively investigated HDAC inhibitors (HDACis) are also analyzed, and the respective clinical trials are also described. Interestingly, it seems that HDACis should be preferably used in drug-combination therapeutic schemes, including radiation.


Assuntos
Carcinoma de Células de Transição/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células de Transição/enzimologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias da Bexiga Urinária/enzimologia
6.
Int J Mol Sci ; 20(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795533

RESUMO

BACKGROUND: Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS: Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS: c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS: The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.


Assuntos
Testes Genéticos/métodos , Melanoma/genética , Splicing de RNA , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Íntrons , Masculino , Melanoma/patologia , Proteínas de Membrana , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Cutâneas/patologia
7.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304003

RESUMO

Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways.


Assuntos
Células-Tronco Adultas/metabolismo , Papila Dentária/citologia , Polpa Dentária/citologia , Proteoma/metabolismo , Dente Decíduo/citologia , Células-Tronco Adultas/classificação , Células-Tronco Adultas/citologia , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Redes e Vias Metabólicas , Proteoma/química , Proteoma/genética
8.
J Proteome Res ; 14(2): 1076-88, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25543836

RESUMO

CNS tumors are the leading cause of cancer-related death in children. Medulloblastoma is the commonest pediatric CNS malignancy, wherein, despite multimodal therapy with surgery, radiation, and chemotherapy, 5 year survival rates merely approach 60%. Until present, gene expression and cytogenetic studies have produced contradicting findings regarding the molecular background of the specific disease. Through integration of genomics, bioinformatics, and proteomics, the current study aims to shed light at the proteomic-related molecular events responsible for MBL pathophysiology, as well as to provide molecular/protein/pathway answers concerning tumor-onset. Experiments were performed on tissues collected at surgery. With 17p loss being the commonest chromosomal aberrance observed in our sample set, array-CGH were employed to first distinguish for 17p-positive cases. 2-DE coupled to mass spectrometry identification exposed the MBL-specific protein profile. Protein profiles of malignant tissues were compared against profiles of normal cerebellar tissues, and quantitative protein differences were determined. Bioinformatics, functional and database analyses, characterization, and subnetwork profiling generated information on MBL protein interactions. Key molecules of the PI3K/mTOR signaling network were identified via the techniques applied herein. Among the findings IGF2, PI3K, Rictor, MAPKAP1, S6K1, 4EBP1, and ELF4A, as part of the IGF network (implicating PI3K/mTOR), were founded to be deregulated.


Assuntos
Neoplasias do Sistema Nervoso Central/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 17 , Meduloblastoma/metabolismo , Proteômica , Neoplasias do Sistema Nervoso Central/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Meduloblastoma/genética
9.
Mol Cancer ; 14: 135, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198749

RESUMO

BACKGROUND: Urinary bladder cancer is one of the most fatal and expensive diseases of industrialized world. Despite the strenuous efforts, no seminal advances have been achieved for its clinical management. Given the importance of metabolic reprogramming in cancer cell survival and growth, we have herein employed 3-BrPA, a halogenated derivative of pyruvate and historically considered inhibitor of glycolysis, to eliminate bladder cancer cells with highly oncogenic molecular signatures. METHODS: Bladder cancer cells were exposed to 3-BrPA in the absence or presence of several specific inhibitors. Cell viability was determined by MTT and flow-cytometry assays; cell death, signaling activity and metabolic integrity by Western blotting and immunofluorescence; mutant-gene profiling by DNA sequencing; and gene expression by RT-sqPCR. RESULTS: 3-BrPA could activate dose-dependent apoptosis (type 1 PCD) and regulated necrosis (type 3 PCD) of T24 (grade III; H-Ras(G12V); p53(ΔY126)), but not RT4 (grade I), cells, with PARP, MLKL, Drp1 and Nec-7-targeted components critically orchestrating necrotic death. However, similarly to RIPK1 and CypD, p53 presented with non-essential contribution to 3-BrPA-induced cellular collapse, while reactivation of mutant p53 with PRIMA-1 resulted in strong synergism of the two agents. Given the reduced expression of MPC components (likely imposing mitochondrial dysfunction) in T24 cells, the suppression of constitutive autophagy (required by cells carrying oncogenic Ras; also, type 2 PCD) and derangement of glucose-homeostasis determinants by 3-BrPA critically contribute to drug-directed depletion of ATP cellular stores. This bioenergetic crisis is translated to severe dysregulation of Akt/FoxO/GSK-3, mTOR/S6, AMPK and MAPK (p44/42, p38 and SAPK/JNK) signaling pathways in 3-BrPA-treated T24 cells. Sensitivity to 3-BrPA (and tolerance to glucose deprivation) does not rely on B-Raf(V600E) or K-Ras(G13D) mutant oncogenic proteins, but partly depends on aberrant signaling activities of Akt, MAPK and AMPK kinases. Interestingly, MCT1- and macropinocytosis-mediated influx of 3-BrPA in T24 represents the principal mechanism that regulates cellular responsiveness to the drug. Besides its capacity to affect transcription in gene-dependent manner, 3-BrPA can also induce GLUT4-specific splicing silencing in both sensitive and resistant cells, thus dictating alternative routes of drug trafficking. CONCLUSIONS: Altogether, it seems that 3-BrPA represents a promising agent for bladder cancer targeted therapy.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Piruvatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Compostos Aza/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Inativação Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pinocitose/efeitos dos fármacos , Transporte Proteico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Splicing de RNA , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Altern Ther Health Med ; 21 Suppl 2: 46-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26308760

RESUMO

CONTEXT: Turmeric (Curcuma longa) is a food spice and colorant reported to be beneficial for human health. Curcumin (diferuloylmethane) is the major ingredient in turmeric, and existing data suggest that the spice, in combination with chemotherapy, provides a superior strategy for treatment of gastrointestinal cancer. However, despite its significant effects, curcumin suffers from poor bioavailability, due to poor absorption in the body. OBJECTIVE: The research team intended to evaluate a liquid extract of turmeric roots (TEx) that the team had formulated for its in vitro, anticancer activity against several human, colorectal cancer cell lines. DESIGN: The research team performed in vitro studies evaluating the anticancer efficacy via short and long-term assays and also evaluated invasion using Matrigel (Corning Life Sciences, Tewksbury, MA, USA). Further, in vitro anticancer activity of TEx was tested against 3-D cultures of HCT166 spheroids, which were subsequently analyzed by flow cytometry. SETTING: ADNA, Inc, Columbus, OH, USA; Foundation for Biomedical Research of the Academy of Athens, Athens, Greece; and Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece. INTERVENTION: The study used 4 human cell lines of colorectal cancer-HT29, HCT15, DLD1, and HCT116-and 2 breast cancer cell lines-SW480 and MDA-MB231. For a short-term assay, the extract was dissolved into culture mediums of HT29, HCT15, DLD1, HCT116, and SW480 at four 10-fold dilutions (100 to 0.1 µg/mL). For a long-term assay, TEx was added to the cultures of the same cell lines at 3 dilutions-20, 10, and 5 µg/mL. For an invasion assay, 100 µL per well of Matrigel was added and allowed to polymerize prior seeding of the MDA-MB231 cells. For cultures treated with the TEx, the TEx was mixed with the cell suspension prior to the seeding step. For the spheroid testing, the TEx was added to HCT116 cells either at the beginning of an experiment (ie, before the addition of the cancer cells), which was a chemopreventive approach, or 48 h later, on the addition of cells to the wells to allow the generation of spheroids, which was a chemotherapeutic approach. OUTCOME MEASURES: The in vitro activities of TEx were evaluated using a 48-h-incubation, short-term assay and a 2-wk, long-term (clonogenic) assay. To analyze the anti-invasive activity of the extract, images for the Matrigel invasion assay were taken with a camera at the 24-h time point. The in vitro, anticancer activity of TEx was also tested against 3-D cultures of HCT116 spheroids that were subsequently analyzed using flow cytometry. RESULTS: TEx had potently inhibited the growth of all human colon cancer cell lines tested in a dose- and time-dependent manner. TEx inhibited the formation of HCT116 spheroids when the cells were incubated with the extract. The extract also disrupted the formation of tubules formed by MDA-MB231 cells grown on Matrigel at concentrations that did not affect the overall viability of the cells, indicating a potent anti-invasive activity. CONCLUSIONS: These data suggest a potential therapeutic activity for TEx against human colon cancer, most likely due to the enhanced bioavailability of the turmeric.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Curcuma/química , Curcumina/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Curcumina/química , Etanol/química , Células HCT116 , Células HT29 , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas
11.
Transl Neurodegener ; 13(1): 11, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378800

RESUMO

BACKGROUND: It is now realized that Parkinson's disease (PD) pathology extends beyond the substantia nigra, affecting both central and peripheral nervous systems, and exhibits a variety of non-motor symptoms often preceding motor features. Neuroinflammation induced by activated microglia and astrocytes is thought to underlie these manifestations. α-Synuclein aggregation has been linked with sustained neuroinflammation in PD, aggravating neuronal degeneration; however, there is still a lack of critical information about the structural identity of the α-synuclein conformers that activate microglia and/or astrocytes and the molecular pathways involved. METHODS: To investigate the role of α-synuclein conformers in the development and maintenance of neuroinflammation, we used primary quiescent microglia and astrocytes, post-mortem brain tissues from PD patients and A53T α-synuclein transgenic mice that recapitulate key features of PD-related inflammatory responses in the absence of cell death, i.e., increased levels of pro-inflammatory cytokines and complement proteins. Biochemical and -omics techniques including RNAseq and secretomic analyses, combined with 3D reconstruction of individual astrocytes and live calcium imaging, were used to uncover the molecular mechanisms underlying glial responses in the presence of α-synuclein oligomers in vivo and in vitro. RESULTS: We found that the presence of SDS-resistant hyper-phosphorylated α-synuclein oligomers, but not monomers, was correlated with sustained inflammatory responses, such as elevated levels of endogenous antibodies and cytokines and microglial activation. Similar oligomeric α-synuclein species were found in post-mortem human brain samples of PD patients but not control individuals. Detailed analysis revealed a decrease in Iba1Low/CD68Low microglia and robust alterations in astrocyte number and morphology including process retraction. Our data indicated an activation of the p38/ATF2 signaling pathway mostly in microglia and a sustained induction of the NF-κB pathway in astrocytes of A53T mice. The sustained NF-κB activity triggered the upregulation of astrocytic T-type Cav3.2 Ca2+ channels, altering the astrocytic secretome and promoting the secretion of IGFBPL1, an IGF-1 binding protein with anti-inflammatory and neuroprotective potential. CONCLUSIONS: Our work supports a causative link between the neuron-produced α-synuclein oligomers and sustained neuroinflammation in vivo and maps the signaling pathways that are stimulated in microglia and astrocytes. It also highlights the recruitment of astrocytic Cav3.2 channels as a potential neuroprotective mediator against the α-synuclein-induced neuroinflammation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , NF-kappa B/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Sinalização do Cálcio , Doença de Parkinson/metabolismo , Camundongos Transgênicos , Citocinas
12.
Commun Biol ; 6(1): 752, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468602

RESUMO

Using protein structure to predict function, interactions, and evolutionary history is still an open challenge, with existing approaches relying extensively on protein homology and families. Here, we present Machaon, a data-driven method combining orientation invariant metrics on phi-psi angles, inter-residue contacts and surface complexity. It can be readily applied on whole structures or segments-such as domains and binding sites. Machaon was applied on SARS-CoV-2 Spike monomers of native, Delta and Omicron variants and identified correlations with a wide range of viral proteins from close to distant taxonomy ranks, as well as host proteins, such as ACE2 receptor. Machaon's meta-analysis of the results highlights structural, chemical and transcriptional similarities between the Spike monomer and human proteins, indicating a multi-level viral mimicry. This extended analysis also revealed relationships of the Spike protein with biological processes such as ubiquitination and angiogenesis and highlighted different patterns in virus attachment among the studied variants. Available at: https://machaonweb.com .


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sítios de Ligação , Receptores Virais/metabolismo
13.
Cancers (Basel) ; 15(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37509392

RESUMO

Bladder cancer (BLCA) is the sixth most common type of cancer and has a dismal prognosis if diagnosed late. To identify treatment options for BLCA, we systematically evaluated data from the Broad Institute DepMap project. We found that urothelial BLCA cell lines are among the most sensitive to microtubule assembly inhibition by paclitaxel treatment. Strikingly, we revealed that the top dependencies in BLCA cell lines include genes encoding proteins involved in microtubule assembly. This highlights the importance of microtubule network dynamics as a major vulnerability in human BLCA. In cancers such as ovarian and breast, where paclitaxel is the gold standard of care, resistance to paclitaxel treatment has been linked to p53-inactivating mutations. To study the response of BLCA to microtubule assembly inhibition and its mechanistic link with the mutational status of the p53 protein, we treated a collection of BLCA cell lines with a dose range of paclitaxel and performed a detailed characterization of the response. We discovered that BLCA cell lines are significantly sensitive to low concentrations of paclitaxel, independently of their p53 status. Paclitaxel induced a G2/M cell cycle arrest and growth inhibition, followed by robust activation of apoptosis. Most importantly, we revealed that paclitaxel triggered a robust DNA-damage response and apoptosis program without activating the p53 pathway. Integration of transcriptomics, epigenetic, and dependency data demonstrated that the response of BLCA to paclitaxel is independent of p53 mutational signatures but strongly depends on the expression of DNA repair genes. Our work highlights urothelial BLCA as an exceptional candidate for paclitaxel treatment. It paves the way for the rational use of a combination of paclitaxel and DNA repair inhibitors as an effective, novel therapeutic strategy.

14.
Electromagn Biol Med ; 31(4): 250-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22263702

RESUMO

The objective of this study was to investigate the effects of two sources of electromagnetic fields (EMFs) on the proteome of cerebellum, hippocampus, and frontal lobe in Balb/c mice following long-term whole body irradiation. Three equally divided groups of animals (6 animals/group) were used; the first group was exposed to a typical mobile phone, at a SAR level range of 0.17-0.37 W/kg for 3 h daily for 8 months, the second group was exposed to a wireless DECT base (Digital Enhanced Cordless Telecommunications/Telephone) at a SAR level range of 0.012-0.028 W/kg for 8 h/day also for 8 months and the third group comprised the sham-exposed animals. Comparative proteomics analysis revealed that long-term irradiation from both EMF sources altered significantly (p < 0.05) the expression of 143 proteins in total (as low as 0.003 fold downregulation up to 114 fold overexpression). Several neural function related proteins (i.e., Glial Fibrillary Acidic Protein (GFAP), Alpha-synuclein, Glia Maturation Factor beta (GMF), and apolipoprotein E (apoE)), heat shock proteins, and cytoskeletal proteins (i.e., Neurofilaments and tropomodulin) are included in this list as well as proteins of the brain metabolism (i.e., Aspartate aminotransferase, Glutamate dehydrogenase) to nearly all brain regions studied. Western blot analysis on selected proteins confirmed the proteomics data. The observed protein expression changes may be related to brain plasticity alterations, indicative of oxidative stress in the nervous system or involved in apoptosis and might potentially explain human health hazards reported so far, such as headaches, sleep disturbance, fatigue, memory deficits, and brain tumor long-term induction under similar exposure conditions.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Telefone Celular/instrumentação , Proteoma/metabolismo , Proteoma/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Irradiação Corporal Total/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transcriptoma/efeitos da radiação
15.
J Proteome Res ; 10(5): 2555-65, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21466243

RESUMO

Childhood pilocytic astrocytoma is the most frequent brain tumor affecting children. Proteomics analysis is currently considered a powerful tool for global evaluation of protein expression and has been widely applied in the field of cancer research. In the present study, a series of proteomics, genomics, and bioinformatics approaches were employed to identify, classify and characterize the proteome content of low-grade brain tumors as it appears in early childhood. Through bioinformatics database construction, protein profiles generated from pathological tissue samples were compared against profiles of normal brain tissues. Additionally, experiments of comparative genomic hybridization arrays were employed to monitor for genetic aberrations and sustain the interpretation and evaluation of the proteomic data. The current study confirms the dominance of MAPK pathway for the childhood pilocytic astrocytoma occurrence and novel findings regarding the ERK-2 expression are reported.


Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Western Blotting , Criança , Pré-Escolar , Análise por Conglomerados , Hibridização Genômica Comparativa , Biologia Computacional/métodos , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Feminino , Genômica/métodos , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo
16.
Commun Biol ; 4(1): 726, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117353

RESUMO

Argonaute 2 (AGO2) is an indispensable component of the RNA-induced silencing complex, operating at the translational or posttranscriptional level. It is compartmentalized into structures such as GW- and P-bodies, stress granules and adherens junctions as well as the midbody. Here we show using immunofluorescence, image and bioinformatic analysis and cytogenetics that AGO2 also resides in membrane protrusions such as open- and close-ended tubes. The latter are cytokinetic bridges where AGO2 colocalizes at the midbody arms with cytoskeletal components such as α-Τubulin and Aurora B, and various kinases. AGO2, phosphorylated on serine 387, is located together with Dicer at the midbody ring in a manner dependent on p38 MAPK activity. We further show that AGO2 is stress sensitive and important to ensure the proper chromosome segregation and cytokinetic fidelity. We suggest that AGO2 is part of a regulatory mechanism triggered by cytokinetic stress to generate the appropriate micro-environment for local transcript homeostasis.


Assuntos
Proteínas Argonautas/fisiologia , Divisão Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Proteínas Argonautas/metabolismo , Linhagem Celular , Citocinese , Citoesqueleto/metabolismo , Imunofluorescência , Células HCT116 , Células Hep G2 , Humanos , Pseudópodes/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
17.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922182

RESUMO

Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-ß controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.

18.
Eur J Dent ; 13(2): 161-165, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31480089

RESUMO

OBJECTIVE: The aim of this study was to evaluate the viability of stem cells from exfoliated and deciduous teeth (SHED) on dentin surface treated with triple antibiotic paste or calcium hydroxide. MATERIALS AND METHODS: Nine single-rooted extracted premolars were prepared appropriately and divided into three groups. In group A, the root canals were left empty, a triple antibiotic paste was placed in the root canals of group B, and calcium hydroxide was placed in the root canals of group C. After 1 week, the intracanal medicaments were removed, and stem cells were seeded on the treated surface of the specimens for 1 more week. The cells were stained and then observed under confocal microscope over the entire surface of each test material. Counting of the cells was made by Image J (3D) software, as well as manually. STATISTICAL ANALYSIS: To investigate any statistically significant differences between the experimental groups, statistical tests including Kruskal-Wallis and Mann-Whitney U-test were performed. Significance level was set to P < 0.05, and all analyses were performed with SPSS IBM program, v. 21. RESULTS: Groups B and C showed statistically significantly higher number of cells compared to Group A, whereas cells developed in a substrate of calcium hydroxide residues appeared in majority with distinct cores and widened unlike other groups. CONCLUSIONS: The effect of calcium hydroxide manifested better results regarding the number of stems cells on root canal surfaces.

19.
Biol Open ; 8(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575544

RESUMO

Copper, a transition metal, is an essential component for normal growth and development. It acts as a critical co-factor of many enzymes that play key roles in diverse cellular processes. The present study attempts to investigate the regulatory functions decisively controlling copper trafficking during development and aging of the Drosophila model system. Hence, through engagement of the GAL4/UAS genetic platform and RNAi technology, we herein examined the in vivo significance of Atox1 and CCS genes, products of which pivotally govern cellular copper trafficking in fly tissue pathophysiology. Specifically, we analyzed the systemic effects of their targeted downregulation on the eye, wing, neuronal cell populations and whole-body tissues of the fly. Our results reveal that, in contrast to the eye, suppression of their expression in the wing leads to a notable increase in the percentage of malformed organs observed. Furthermore, we show that Atox1 or CCS gene silencing in either neuronal or whole-body tissues can critically affect the viability and climbing capacity of transgenic flies, while their double-genetic targeting suggests a rather synergistic mode of action of the cognate protein products. Interestingly, pharmacological intervention with the anti-cancer drug cisplatin indicates the major contribution of CCS copper chaperone to cisplatin's cellular trafficking, and presumably to tumor resistance often acquired during chemotherapy. Altogether, it seems that Atox1 and CCS proteins serve as tissue/organ-specific principal regulators of physiological Drosophila development and aging, while their tissue-dependent downregulation can provide important insights for Atox1 and CCS potential exploitation as predictive gene biomarkers of cancer-cell chemotherapy responses.

20.
Eur J Dent ; 12(2): 287-291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988252

RESUMO

OBJECTIVE: The aim of this study was to evaluate the viability of human periodontal ligament (PDL) cells on MTA-Fillapex, GuttaFlow 2, TotalFill Sealer, and BioRoot™ RCS in comparison to conventional epoxy resin-based (AH Plus) and zinc oxide-eugenol-based (Roth's 801) sealers. MATERIALS AND METHODS: Sealers were divided into two groups, and five coverslips for each material per group were prepared. In the first group, PDLs were added immediately after the preparation of sealers (Fresh Group), and in the second, PDLs were added after 24 h. PDLs were cultured for 72 h and afterward, counted using standard hematocytometry. A Mann-Whitney U-test and Kruskal-Wallis test were used for the statistical analysis. The level of significance was set at 5%. Furthermore, cell morphology was assessed by confocal microscopy. RESULTS: The number of viable cells for the 24 h-set groups was higher than the freshly mixed in all sealers except Roth's 801. In both groups, GuttaFlow 2 presented the highest number of viable cells. In a descending order of cells' survival, TotalFill, BioRoot, and MTA-Fillapex are following and the conventional sealers, AH Plus and Roth's 801, seem not to exhibit the biological properties of the others. Cells grown on GuttaFlow 2, TotalFill, and BioRoot were observed to be well-formed. In contrast, MTA-Fillapex exhibited untypical morphology. No cells were detected on the surfaces of AH Plus, as well as Roth's 801. CONCLUSIONS: All novel sealers presented increased cell viability in comparison to conventional sealers. GuttaFlow 2 exhibited the highest cell viability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA