RESUMO
Autism spectrum disorder (ASD) is a highly heterogeneous disorder, yet transcriptomic profiling of bulk brain tissue has identified substantial convergence among dysregulated genes and pathways in ASD. However, this approach lacks cell-specific resolution. We performed comprehensive transcriptomic analyses on bulk tissue and laser-capture microdissected (LCM) neurons from 59 postmortem human brains (27 ASD and 32 controls) in the superior temporal gyrus (STG) of individuals ranging from 2 to 73 years of age. In bulk tissue, synaptic signaling, heat shock protein-related pathways, and RNA splicing were significantly altered in ASD. There was age-dependent dysregulation of genes involved in gamma aminobutyric acid (GABA) (GAD1 and GAD2) and glutamate (SLC38A1) signaling pathways. In LCM neurons, AP-1-mediated neuroinflammation and insulin/IGF-1 signaling pathways were upregulated in ASD, while mitochondrial function, ribosome, and spliceosome components were downregulated. GABA synthesizing enzymes GAD1 and GAD2 were both downregulated in ASD neurons. Mechanistic modeling suggested a direct link between inflammation and ASD in neurons, and prioritized inflammation-associated genes for future study. Alterations in small nucleolar RNAs (snoRNAs) associated with splicing events suggested interplay between snoRNA dysregulation and splicing disruption in neurons of individuals with ASD. Our findings supported the fundamental hypothesis of altered neuronal communication in ASD, demonstrated that inflammation was elevated at least in part in ASD neurons, and may reveal windows of opportunity for biotherapeutics to target the trajectory of gene expression and clinical manifestation of ASD throughout the human lifespan.
Assuntos
Transtorno do Espectro Autista , Transcriptoma , Humanos , Doenças Neuroinflamatórias , Transtorno do Espectro Autista/genética , Inflamação/genética , Neurônios , Ácido GlutâmicoRESUMO
OBJECTIVE: Approximately half of ischemic strokes (IS) in cancer patients are cryptogenic, with many presumed cardioembolic. We evaluated whether there were specific miRNA and mRNA transcriptome architectures in peripheral blood of IS patients with and without comorbid cancer, and between cardioembolic versus noncardioembolic IS etiologies in comorbid cancer. METHODS: We studied patients with cancer and IS (CS; n = 42), stroke only (SO; n = 41), and cancer only (n = 28), and vascular risk factor-matched controls (n = 30). mRNA-Seq and miRNA-Seq data, analyzed with linear regression models, identified differentially expressed genes in CS versus SO and in cardioembolic versus noncardioembolic CS, and miRNA-mRNA regulatory pairs. Network-level analyses identified stroke etiology-specific responses in CS. RESULTS: A total of 2,085 mRNAs and 31 miRNAs were differentially expressed between CS and SO. In CS, 122 and 35 miRNA-mRNA regulatory pairs, and 5 and 3 coexpressed gene modules, were associated with cardioembolic and noncardioembolic CS, respectively. Complement, growth factor, and immune/inflammatory pathways showed differences between IS etiologies in CS. A 15-gene biomarker panel assembled from a derivation cohort (n = 50) correctly classified 81% of CS and 71% of SO participants in a validation cohort (n = 33). Another 15-gene panel correctly identified etiologies for 13 of 13 CS-cardioembolic and 11 of 11 CS-noncardioembolic participants upon cross-validation; 11 of 16 CS-cryptogenic participants were predicted cardioembolic. INTERPRETATION: We discovered unique mRNA and miRNA transcriptome architecture in CS and SO, and in CS with different IS etiologies. Cardioembolic and noncardioembolic etiologies in CS showed unique coexpression networks and potential master regulators. These may help distinguish CS from SO and identify IS etiology in cryptogenic CS patients. ANN NEUROL 2024;96:565-581.
Assuntos
Redes Reguladoras de Genes , AVC Isquêmico , MicroRNAs , Neoplasias , RNA Mensageiro , Humanos , Masculino , Feminino , RNA Mensageiro/sangue , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , AVC Isquêmico/genética , AVC Isquêmico/sangue , AVC Isquêmico/epidemiologia , Idoso , Neoplasias/genética , Neoplasias/sangue , Neoplasias/complicações , Comorbidade , TranscriptomaRESUMO
BACKGROUND: After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. Peripheral blood cells display distinctive gene expression signatures post-IS and these transcriptional programs reflect changes in immune responses to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of immune and clotting responses at the molecular and cellular level that are involved in acute brain injury and may assist with time-targeted, cell-specific therapy. METHODS: The transcriptomic profiles from peripheral monocytes, neutrophils, and whole blood from 38 ischemic stroke patients and 18 controls were analyzed with RNA-seq as a function of time and etiology after stroke. Differential expression analyses were performed at 0-24 h, 24-48 h, and >48 h following stroke. RESULTS: Unique patterns of temporal gene expression and pathways were distinguished for monocytes, neutrophils, and whole blood with enrichment of interleukin signaling pathways for different time points and stroke etiologies. Compared to control subjects, gene expression was generally upregulated in neutrophils and generally downregulated in monocytes over all times for cardioembolic, large vessel, and small vessel strokes. Self-organizing maps identified gene clusters with similar trajectories of gene expression over time for different stroke causes and sample types. Weighted Gene Co-expression Network Analyses identified modules of co-expressed genes that significantly varied with time after stroke and included hub genes of immunoglobulin genes in whole blood. CONCLUSIONS: Altogether, the identified genes and pathways are critical for understanding how the immune and clotting systems change over time after stroke. This study identifies potential time- and cell-specific biomarkers and treatment targets.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Monócitos/metabolismo , Transcriptoma , Neutrófilos/metabolismo , AVC Isquêmico/genética , Perfilação da Expressão Gênica , Redes Reguladoras de GenesRESUMO
BACKGROUND: This study identified early immune gene responses in peripheral blood associated with 90-day ischemic stroke (IS) outcomes. METHODS: Peripheral blood samples from the CLEAR trial IS patients at ≤ 3 h, 5 h, and 24 h after stroke were compared to vascular risk factor matched controls. Whole-transcriptome analyses identified genes and networks associated with 90-day IS outcome assessed using the modified Rankin Scale (mRS) and the NIH Stroke Scale (NIHSS). RESULTS: The expression of 467, 526, and 571 genes measured at ≤ 3, 5 and 24 h after IS, respectively, were associated with poor 90-day mRS outcome (mRS ≥ 3), while 49, 100 and 35 genes at ≤ 3, 5 and 24 h after IS were associated with good mRS 90-day outcome (mRS ≤ 2). Poor outcomes were associated with up-regulated genes or pathways such as IL-6, IL-7, IL-1, STAT3, S100A12, acute phase response, P38/MAPK, FGF, TGFA, MMP9, NF-kB, Toll-like receptor, iNOS, and PI3K/AKT. There were 94 probe sets shared for poor outcomes vs. controls at all three time-points that correlated with 90-day mRS; 13 probe sets were shared for good outcomes vs. controls at all three time-points; and 46 probe sets were shared for poor vs. good outcomes at all three time-points that correlated with 90-day mRS. Weighted Gene Co-Expression Network Analysis (WGCNA) revealed modules significantly associated with 90-day outcome for mRS and NIHSS. Poor outcome modules were enriched with up-regulated neutrophil genes and with down-regulated T cell, B cell and monocyte-specific genes; and good outcome modules were associated with erythroblasts and megakaryocytes. Finally, genes identified by genome-wide association studies (GWAS) to contain significant stroke risk loci or loci associated with stroke outcome including ATP2B, GRK5, SH3PXD2A, CENPQ, HOXC4, HDAC9, BNC2, PTPN11, PIK3CG, CDK6, and PDE4DIP were significantly differentially expressed as a function of stroke outcome in the current study. CONCLUSIONS: This study suggests the immune response after stroke may impact functional outcomes and that some of the early post-stroke gene expression markers associated with outcome could be useful for predicting outcomes and could be targets for improving outcomes.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Estudo de Associação Genômica Ampla , Fosfatidilinositol 3-Quinases , Acidente Vascular Cerebral/complicações , Expressão Gênica , Resultado do Tratamento , Isquemia Encefálica/complicaçõesRESUMO
Cerebral white matter hyperintensities are an important contributor to ageing brain pathology. Progression in white matter hyperintensity volume is associated with cognitive decline and gait impairment. Understanding the factors associated with white matter hyperintensity progression provides insight into pathogenesis and may identify novel treatment targets to improve cognitive health. We postulated that the immune system interaction with cerebral vessels and tissue may be associated with disease progression, and thus evaluated the relationship of blood leucocyte gene expression to progression of cerebral white matter hyperintensities. A brain MRI was obtained at baseline in 166 patients assessed for a cognitive complaint, and then repeated at regular intervals over a median of 5.9 years (interquartile range 3.5-8.2 years). White matter hyperintensity volumes were measured by semi-automated segmentation and percentage change in white matter hyperintensity per year calculated. A venous blood sample obtained at baseline was used to measure whole-genome expression by RNA sequencing. The relationship between change in white matter hyperintensity volumes over time and baseline leucocyte gene expression was analysed. The mean age was 77.8 (SD 7.5) years and 60.2% of participants were female. The median white matter hyperintensity volume was 13.4â ml (SD 17.4â ml). The mean change in white matter hyperintensity volume was 12% per year. Patients were divided in quartiles by percentage change in white matter hyperintensity volume, which was: -3.5% per year in quartile 1, 7.4% per year in quartile 2, 11.7% in quartile 3 and 33.6% per year in quartile 4. There were 148 genes associated with changing white matter hyperintensity volumes over time (P < 0.05 r > |0.2|). Genes and pathways identified have roles in endothelial dysfunction, extracellular matrix remodelling, altered remyelination, inflammation and response to ischaemia. ADAM8, CFD, EPHB4, FPR2, Wnt-B-catenin, focal adhesion kinase and SIGLEC1 were among the identified genes. The progression of white matter hyperintensity volumes over time is associated with genes involved in endothelial dysfunction, extracellular matrix remodelling, altered remyelination, inflammation and response to ischaemia. Further studies are needed to evaluate the role of peripheral inflammation in relation to rate of white matter hyperintensity progression and the contribution to cognitive decline.
Assuntos
Disfunção Cognitiva , Leucoaraiose , Substância Branca , Proteínas ADAM , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/patologia , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Inflamação/patologia , Leucócitos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
BACKGROUND: Cardio-facio-cutaneous (CFC) syndrome is a human multiple congenital anomaly syndrome that is caused by activating heterozygous mutations in either BRAF, MEK1, or MEK2, three protein kinases of the Ras/mitogen-activated protein kinase (MAPK) pathway. CFC belongs to a group of syndromes known as RASopathies. Skeletal muscle hypotonia is a ubiquitous phenotype of RASopathies, especially in CFC syndrome. To better understand the underlying mechanisms for the skeletal myopathy in CFC, a mouse model with an activating BrafL597V allele was utilized. RESULTS: The activating BrafL597V allele resulted in phenotypic alterations in skeletal muscle characterized by a reduction in fiber size which leads to a reduction in muscle size which are functionally weaker. MAPK pathway activation caused inhibition of myofiber differentiation during embryonic myogenesis and global transcriptional dysregulation of developmental pathways. Inhibition in differentiation can be rescued by MEK inhibition. CONCLUSIONS: A skeletal myopathy was identified in the CFC BrafL597V mouse validating the use of models to study the effect of Ras/MAPK dysregulation on skeletal myogenesis. RASopathies present a novel opportunity to identify new paradigms of myogenesis and further our understanding of Ras in development. Rescue of the phenotype by inhibitors may help advance the development of therapeutic options for RASopathy patients.
Assuntos
Displasia Ectodérmica/genética , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Alelos , Animais , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/patologia , Fácies , Insuficiência de Crescimento/metabolismo , Insuficiência de Crescimento/patologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismoRESUMO
[Figure: see text].
Assuntos
Envelhecimento/imunologia , Sistema Imunitário/imunologia , AVC Isquêmico/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Though there are many biomarker studies of plasma and serum in patients with aneurysmal subarachnoid hemorrhage (SAH), few have examined blood cells that might contribute to vasospasm. In this study, we evaluated inflammatory and prothrombotic pathways by examining mRNA expression in whole blood of SAH patients with and without vasospasm. METHODS: Adult SAH patients with vasospasm (n = 29) and without vasospasm (n = 21) were matched for sex, race/ethnicity, and aneurysm treatment method. Diagnosis of vasospasm was made by angiography. mRNA expression was measured by Affymetrix Human Exon 1.0 ST Arrays. SAH patients with vasospasm were compared to those without vasospasm by ANCOVA to identify differential gene, exon, and alternatively spliced transcript expression. Analyses were adjusted for age, batch, and time of blood draw after SAH. RESULTS: At the gene level, there were 259 differentially expressed genes between SAH patients with vasospasm compared to patients without (false discovery rate < 0.05, |fold change| ≥ 1.2). At the exon level, 1210 exons representing 1093 genes were differentially regulated between the two groups (P < 0.005, ≥ 1.2 |fold change|). Principal components analysis segregated SAH patients with and without vasospasm. Signaling pathways for the 1093 vasospasm-related genes included adrenergic, P2Y, ET-1, NO, sildenafil, renin-angiotensin, thrombin, CCR3, CXCR4, MIF, fMLP, PKA, PKC, CRH, PPARα/RXRα, and calcium. Genes predicted to be alternatively spliced included IL23A, RSU1, PAQR6, and TRIP6. CONCLUSIONS: This is the first study to demonstrate that mRNA expression in whole blood distinguishes SAH patients with vasospasm from those without vasospasm and supports a role of coagulation and immune systems in vasospasm.
Assuntos
Aneurisma Roto/fisiopatologia , Aneurisma Intracraniano/fisiopatologia , RNA Mensageiro/sangue , Hemorragia Subaracnóidea/fisiopatologia , Vasoespasmo Intracraniano/genética , Adulto , Idoso , Aneurisma Roto/complicações , Feminino , Humanos , Aneurisma Intracraniano/complicações , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Hemorragia Subaracnóidea/complicações , Transcriptoma , Vasoespasmo Intracraniano/etiologiaRESUMO
Background and Purpose- Comorbid cancer is common in patients with acute ischemic stroke (AIS). As blood mRNA profiles can distinguish AIS mechanisms, we hypothesized that cancer-related AIS would have a distinctive gene expression profile. Methods- We evaluated 4 groups of 10 subjects prospectively enrolled at 3 centers from 2009 to 2018. This included the group of interest with active solid tumor cancer and AIS and 3 control groups with active cancer only, AIS only, or vascular risk factors only. Subjects in the AIS-only and cancer-only groups were matched to subjects in the cancer-stroke group by age, sex, and cancer type (if applicable). Subjects in the vascular risk factor group were matched to subjects in the cancer-stroke and stroke-only groups by age, sex, and vascular risk factors. Blood was drawn 72 to 120 hours after stroke. Total RNA was processed using 3' mRNA sequencing. ANOVA and Fisher least significant difference contrast methods were used to estimate differential gene expression between groups. Results- In the cancer-stroke group, 50% of strokes were cryptogenic. All groups had differentially expressed genes that could distinguish among them. Comparing the cancer-stroke group to the stroke-only group and after accounting for cancer-only genes, 438 genes were differentially expressed, including upregulation of multiple genes/pathways implicated in autophagy signaling, immunity/inflammation, and gene regulation, including IL (interleukin)-1, interferon, relaxin, mammalian target of rapamycin signaling, SQSTMI1 (sequestosome-1), and CREB1 (cAMP response element binding protein-1). Conclusions- This study provides evidence for a distinctive molecular signature in blood mRNA expression profiles of patients with cancer-related AIS. Future studies should evaluate whether blood mRNA can predict detection of occult cancer in patients with AIS. Clinical Trial Registration- URL: https://clinicaltrials.gov. Unique identifier: NCT02604667.
Assuntos
Isquemia Encefálica , Regulação Neoplásica da Expressão Gênica , Neoplasias , RNA Mensageiro/sangue , RNA Neoplásico/sangue , Acidente Vascular Cerebral , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/sangue , Isquemia Encefálica/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/sangue , Neoplasias/sangue , Neoplasias/complicações , Estudos Prospectivos , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/etiologiaRESUMO
BACKGROUND: Intracerebral hemorrhage (ICH) has a high morbidity and mortality. The peripheral immune system and cross-talk between peripheral blood and brain have been implicated in the ICH immune response. Thus, we delineated the gene networks associated with human ICH in the peripheral blood transcriptome. We also compared the differentially expressed genes in blood following ICH to a prior human study of perihematomal brain tissue. METHODS: We performed peripheral blood whole-transcriptome analysis of ICH and matched vascular risk factor control subjects (n = 66). Gene co-expression network analysis identified groups of co-expressed genes (modules) associated with ICH and their most interconnected genes (hubs). Mixed-effects regression identified differentially expressed genes in ICH compared to controls. RESULTS: Of seven ICH-associated modules, six were enriched with cell-specific genes: one neutrophil module, one neutrophil plus monocyte module, one T cell module, one Natural Killer cell module, and two erythroblast modules. The neutrophil/monocyte modules were enriched in inflammatory/immune pathways; the T cell module in T cell receptor signaling genes; and the Natural Killer cell module in genes regulating alternative splicing, epigenetic, and post-translational modifications. One erythroblast module was enriched in autophagy pathways implicated in experimental ICH, and NRF2 signaling implicated in hematoma clearance. Many hub genes or module members, such as IARS, mTOR, S1PR1, LCK, FYN, SKAP1, ITK, AMBRA1, NLRC4, IL6R, IL17RA, GAB2, MXD1, PIK3CD, NUMB, MAPK14, DDX24, EVL, TDP1, ATG3, WDFY3, GSK3B, STAT3, STX3, CSF3R, PIP4K2A, ANXA3, DGAT2, LRP10, FLOT2, ANK1, CR1, SLC4A1, and DYSF, have been implicated in neuroinflammation, cell death, transcriptional regulation, and some as experimental ICH therapeutic targets. Gene-level analysis revealed 1225 genes (FDR p < 0.05, fold-change > |1.2|) have altered expression in ICH in peripheral blood. There was significant overlap of the 1225 genes with dysregulated genes in human perihematomal brain tissue (p = 7 × 10-3). Overlapping genes were enriched for neutrophil-specific genes (p = 6.4 × 10-08) involved in interleukin, neuroinflammation, apoptosis, and PPAR signaling. CONCLUSIONS: This study delineates key processes underlying ICH pathophysiology, complements experimental ICH findings, and the hub genes significantly expand the list of novel ICH therapeutic targets. The overlap between blood and brain gene responses underscores the importance of examining blood-brain interactions in human ICH.
Assuntos
Autofagia/fisiologia , Hemorragia Cerebral , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Transdução de Sinais/fisiologia , Estudos de Casos e Controles , Hemorragia Cerebral/genética , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Citocinas/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Sistema Imunitário , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transcriptoma/fisiologiaRESUMO
BACKGROUND AND PURPOSE: Although peripheral blood mRNA and micro-RNA change after ischemic stroke, any role for long noncoding RNA (lncRNA), which comprise most of the genome and have been implicated in various diseases, is unknown. Thus, we hypothesized that lncRNA expression also changes after stroke. METHODS: lncRNA expression was assessed in 266 whole-blood RNA samples drawn once per individual from patients with ischemic stroke and matched with vascular risk factor controls. Differential lncRNA expression was assessed by ANCOVA (P<0.005; fold change>|1.2|), principal components analysis, and hierarchical clustering on a derivation set (n=176) and confirmed on a validation set (n=90). Poststroke temporal lncRNA expression changes were assessed using ANCOVA with confounding factor correction (P<0.005; partial correlation with time since event >|0.4|). Because sexual dimorphism exists in stroke, analyses were performed for each sex separately. RESULTS: A total of 299 lncRNAs were differentially expressed between stroke and control males, whereas 97 lncRNAs were differentially expressed between stroke and control females. Significant changes of lncRNA expression with time after stroke were detected for 49 lncRNAs in men and 31 lncRNAs in women. Some differentially expressed lncRNAs mapped close to genomic locations of previously identified putative stroke-risk genes, including lipoprotein, lipoprotein(a)-like 2, ABO (transferase A, α1-3-N-acetylgalactosaminyltransferase; transferase B, α1-3-galactosyltransferase) blood group, prostaglandin 12 synthase, and α-adducins. CONCLUSIONS: This study provides evidence of altered and sexually dimorphic lncRNA expression in peripheral blood of patients with stroke compared with that of controls and suggests that lncRNAs have potential for stroke biomarker development. Some regulated lncRNA could regulate some previously identified putative stroke-risk genes.
Assuntos
Isquemia Encefálica/sangue , RNA Longo não Codificante/sangue , Acidente Vascular Cerebral/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Isquemia Encefálica/genética , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Acidente Vascular Cerebral/genética , Fatores de TempoRESUMO
Brain edema, the first stage of intracranial hypertension, has been associated with poor prognosis and increased mortality after acute brain injury such as ischemic stroke, intracranial hemorrhage (ICH), and traumatic brain injury (TBI). Acute brain injury often initiates release of many molecules, including glutamate, adenosine, thrombin, oxyhemoglobin, cytokines, reactive oxygen species (ROS), damage-associated molecular pattern molecules (DAMPs), and others. Most of these molecules activate Src family kinases (SFKs), a family of proto-oncogenic non-receptor tyrosine kinases, resulting in blood-brain barrier (BBB) disruption and brain edema at the acute stage after brain injury. However, SFKs also contribute to BBB self-repair and brain edema resolution in the chronic stage that follows brain injury. In this review, we summarize possible pathways through which SFKs are implicated in both brain edema formation and its eventual resolution.
Assuntos
Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Isquemia Encefálica/metabolismo , Hemorragia Cerebral/metabolismo , Acidente Vascular Cerebral/metabolismo , Quinases da Família src/metabolismo , Barreira Hematoencefálica/metabolismo , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/complicações , Isquemia Encefálica/complicações , Hemorragia Cerebral/complicações , Humanos , Hipertensão Intracraniana/etiologia , Acidente Vascular Cerebral/complicaçõesRESUMO
OBJECTIVE: Hemorrhagic transformation (HT) is a major complication of ischemic stroke that worsens outcomes and increases mortality. Disruption of the blood-brain barrier is a central feature of HT pathogenesis, and leukocytes may contribute to this process. We sought to determine whether ischemic strokes that develop HT have differences in RNA expression in blood within 3 hours of stroke onset prior to treatment with thrombolytic therapy. METHODS: Stroke patient blood samples were obtained prior to treatment with thrombolysis, and leukocyte RNA was assessed by microarray analysis. Strokes that developed HT (n = 11) were compared to strokes without HT (n = 33) and controls (n = 14). Genes were identified (corrected p < 0.05, fold change ≥|1.2|), and functional analysis was performed. RNA prediction of HT in stroke was evaluated using cross-validation, and in a second stroke cohort (n = 52). RESULTS: Ischemic strokes that developed HT had differential expression of 29 genes in circulating leukocytes prior to treatment with thrombolytic therapy. A panel of 6 genes could predict strokes that later developed HT with 80% sensitivity and 70.2% specificity. Key pathways involved in HT of human stroke are described, including amphiregulin, a growth factor that regulates matrix metalloproteinase-9; a shift in transforming growth factor-ß signaling involving SMAD4, INPP5D, and IRAK3; and a disruption of coagulation factors V and VIII. INTERPRETATION: Identified genes correspond to differences in inflammation and coagulation that may predispose to HT in ischemic stroke. Given the adverse impact of HT on stroke outcomes, further evaluation of the identified genes and pathways is warranted to determine their potential as therapeutic targets to reduce HT and as markers of HT risk.
Assuntos
Isquemia Encefálica/sangue , RNA Mensageiro/sangue , Acidente Vascular Cerebral/sangue , Idoso , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Hemorragia Cerebral/sangue , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/genética , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Valor Preditivo dos Testes , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Fatores de TempoRESUMO
BACKGROUND: Defining the RNA transcriptome in Alzheimer Disease (AD) will help understand the disease mechanisms and provide biomarkers. Though the AD blood transcriptome has been studied, effects of white matter hyperintensities (WMH) were not considered. This study investigated the AD blood transcriptome and accounted for WMH. METHODS: RNA from whole blood was processed on whole-genome microarrays. RESULTS: A total of 293 probe sets were differentially expressed in AD versus controls, 5 of which were significant for WMH status. The 288 AD-specific probe sets classified subjects with 87.5% sensitivity and 90.5% specificity. They represented 188 genes of which 29 have been reported in prior AD blood and 89 in AD brain studies. Regulated blood genes included MMP9, MME (Neprilysin), TGFß1, CA4, OCLN, ATM, TGM3, IGFR2, NOV, RNF213, BMX, LRRN1, CAMK2G, INSR, CTSD, SORCS1, SORL1, and TANC2. CONCLUSIONS: RNA expression is altered in AD blood irrespective of WMH status. Some genes are shared with AD brain.
Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Biomarcadores/sangue , RNA/sangue , Substância Branca/patologia , Idoso , Doença de Alzheimer/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , TranscriptomaRESUMO
OBJECTIVE: Theories of amygdala function are central to our understanding of psychiatric and neurodevelopmental disorders. However, limited knowledge of the molecular and cellular composition of the amygdala impedes translational research aimed at developing new treatments and interventions. The aim of this study was to characterize and compare the composition of amygdala cells to help bridge the gap between preclinical models and human psychiatric and neurodevelopmental disorders. METHODS: Tissue was dissected from multiple amygdala subnuclei in both humans (N=3, male) and rhesus macaques (N=3, male). Single-nucleus RNA sequencing was performed to characterize the transcriptomes of individual nuclei. RESULTS: The results reveal substantial heterogeneity between regions, even when restricted to inhibitory or excitatory neurons. Consistent with previous work, the data highlight the complexities of individual marker genes for uniquely targeting specific cell types. Cross-species analyses suggest that the rhesus monkey model is well-suited to understanding the human amygdala, but also identify limitations. For example, a cell cluster in the ventral lateral nucleus of the amygdala (vLa) is enriched in humans relative to rhesus macaques. Additionally, the data describe specific cell clusters with relative enrichment of disorder-related genes. These analyses point to the human-enriched vLa cell cluster as relevant to autism spectrum disorder, potentially highlighting a vulnerability to neurodevelopmental disorders that has emerged in recent primate evolution. Further, a cluster of cells expressing markers for intercalated cells is enriched for genes reported in human genome-wide association studies of neuroticism, anxiety disorders, and depressive disorders. CONCLUSIONS: Together, these findings shed light on the composition of the amygdala and identify specific cell types that can be prioritized in basic science research to better understand human psychopathology and guide the development of potential treatments.
RESUMO
The mechanisms of cognitive decline after intraventricular hemorrhage (IVH) in some patients continue to be poorly understood. Multiple rodent models of intraventricular or subarachnoid hemorrhage have only shown mild or even no cognitive impairment on subsequent behavioral testing. In this study, we show that intraventricular hemorrhage only leads to a significant spatial memory deficit in the Morris water maze if it occurs in the setting of an elevated intracranial pressure (ICP). Histopathological analysis of these IVH + ICP animals did not show evidence of neuronal degeneration in the hippocampal formation after 2 weeks but instead showed significant microglial activation measured by lacunarity and fractal dimensions. RNA sequencing of the hippocampus showed distinct enrichment of genes in the IVH + ICP group but not in IVH alone having activated microglial signaling pathways. The most significantly activated signaling pathway was the classical complement pathway, which is used by microglia to remove synapses, followed by activation of the Fc receptor and DAP12 pathways. Thus, our study lays the groundwork for identifying signaling pathways that could be targeted to ameliorate behavioral deficits after IVH.
Assuntos
Hipertensão Intracraniana , Hemorragia Subaracnóidea , Animais , Microglia/patologia , Hemorragia Cerebral/patologia , Transdução de SinaisRESUMO
BACKGROUND AND PURPOSE: The cause of ischemic stroke remains unclear, or cryptogenic, in as many as 35% of patients with stroke. Not knowing the cause of stroke restricts optimal implementation of prevention therapy and limits stroke research. We demonstrate how gene expression profiles in blood can be used in conjunction with a measure of infarct location on neuroimaging to predict a probable cause in cryptogenic stroke. METHODS: The cause of cryptogenic stroke was predicted using previously described profiles of differentially expressed genes characteristic of patients with cardioembolic, arterial, and lacunar stroke. RNA was isolated from peripheral blood of 131 cryptogenic strokes and compared with profiles derived from 149 strokes of known cause. Each sample was run on Affymetrix U133 Plus 2.0 microarrays. Cause of cryptogenic stroke was predicted using gene expression in blood and infarct location. RESULTS: Cryptogenic strokes were predicted to be 58% cardioembolic, 18% arterial, 12% lacunar, and 12% unclear etiology. Cryptogenic stroke of predicted cardioembolic etiology had more prior myocardial infarction and higher CHA(2)DS(2)-VASc scores compared with stroke of predicted arterial etiology. Predicted lacunar strokes had higher systolic and diastolic blood pressures and lower National Institutes of Health Stroke Scale compared with predicted arterial and cardioembolic strokes. Cryptogenic strokes of unclear predicted etiology were less likely to have a prior transient ischemic attack or ischemic stroke. CONCLUSIONS: Gene expression in conjunction with a measure of infarct location can predict a probable cause in cryptogenic strokes. Predicted groups require further evaluation to determine whether relevant clinical, imaging, or therapeutic differences exist for each group.
Assuntos
Doenças Arteriais Cerebrais/complicações , Cardiopatias/complicações , Acidente Vascular Cerebral Lacunar/diagnóstico , Acidente Vascular Cerebral Lacunar/genética , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/genética , Tromboembolia/complicações , Idoso , Angiografia Cerebral , Doenças Arteriais Cerebrais/patologia , Eletrocardiografia , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica , Cardiopatias/diagnóstico por imagem , Cardiopatias/patologia , Insuficiência Cardíaca/complicações , Hemodinâmica/fisiologia , Humanos , Inflamação/patologia , Ataque Isquêmico Transitório/complicações , Masculino , Pessoa de Meia-Idade , Neuroimagem , Prognóstico , Fatores de Risco , Tromboembolia/diagnóstico por imagem , Tromboembolia/patologia , UltrassonografiaRESUMO
BACKGROUND AND PURPOSE: Deciphering whether a transient neurological event (TNE) is of ischemic or nonischemic etiology can be challenging. Ischemia of cerebral tissue elicits an immune response in stroke and transient ischemic attack (TIA). This response, as detected by RNA expressed in immune cells, could potentially distinguish ischemic from nonischemic TNE. METHODS: Analysis of 208 TIAs, ischemic strokes, controls, and TNE was performed. RNA from blood was processed on microarrays. TIAs (n=26) and ischemic strokes (n=94) were compared with controls (n=44) to identify differentially expressed genes (false discovery rate <0.05, fold change ≥1.2). Genes common to TIA and stroke were used predict ischemia in TIA diffusion-weighted imaging-positive/minor stroke (n=17), nonischemic TNE (n=13), and TNE of unclear etiology (n=14). RESULTS: Seventy-four genes expressed in TIA were common to those in ischemic stroke. Functional pathways common to TIA and stroke related to activation of innate and adaptive immune systems, involving granulocytes and B cells. A prediction model using 26 of the 74 ischemia genes distinguished TIA and stroke subjects from control subjects with 89% sensitivity and specificity. In the validation cohort, 17 of 17 TIA diffusion-weighted imaging-positive/minor strokes were predicted to be ischemic, and 10 of 13 nonischemic TNE were predicted to be nonischemic. In TNE of unclear etiology, 71% were predicted to be ischemic. These subjects had higher ABCD(2) scores. CONCLUSIONS: A common molecular response to ischemia in TIA and stroke was identified, relating to activation of innate and adaptive immune systems. TNE of ischemic etiology was identified based on gene profiles that may be of clinical use once validated.
Assuntos
Imunidade Adaptativa , Isquemia Encefálica , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Doenças do Sistema Nervoso , RNA , Acidente Vascular Cerebral , Idoso , Isquemia Encefálica/sangue , Isquemia Encefálica/complicações , Isquemia Encefálica/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/imunologia , RNA/sangue , RNA/imunologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/imunologiaRESUMO
BACKGROUND AND PURPOSE: Differences in ischemic stroke between men and women have been mainly attributed to hormonal effects. However, sex differences in immune response to ischemia may exist. We hypothesized that differential expression of X-chromosome genes in blood immune cells contribute to differences between men and women with ischemic stroke. METHODS: RNA levels of 683 X-chromosome genes were measured on Affymetrix U133 Plus2.0 microarrays. Blood samples from patients with ischemic stroke were obtained at ≤ 3 hours, 5 hours, and 24 hours (n=61; 183 samples) after onset and compared with control subjects without symptomatic vascular diseases (n=109). Sex difference in X-chromosome gene expression was determined using analysis of covariance (false discovery rate ≤ 0.05, fold change ≥ 1.2). RESULTS: At ≤ 3, 5, and 24 hours after stroke, there were 37, 140, and 61 X-chromosome genes, respectively, that changed in women; and 23, 18, and 31 X-chromosome genes that changed in men. Female-specific genes were associated with post-translational modification, small-molecule biochemistry, and cell-cell signaling. Male-specific genes were associated with cellular movement, development, cell-trafficking, and cell death. Altered sex specific X-chromosome gene expression occurred in 2 genes known to be associated with human stroke, including galactosidase A and IDS, mutations of which result in Fabry disease and Hunter syndrome, respectively. CONCLUSIONS: There are differences in X-chromosome gene expression between men and women with ischemic stroke. Future studies are needed to decipher whether these differences are associated with sexually dimorphic immune response, repair or other mechanisms after stroke, or whether some of them represent risk determinants.
Assuntos
Isquemia Encefálica/genética , Cromossomos Humanos X/genética , Expressão Gênica/genética , Acidente Vascular Cerebral/genética , Adulto , Idoso , Isquemia Encefálica/complicações , Isquemia Encefálica/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional/genética , RNA/genética , Medição de Risco , Caracteres Sexuais , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/imunologia , Regulação para Cima/genética , Regulação para Cima/fisiologia , alfa-Galactosidase/metabolismoRESUMO
OBJECTIVE: Determining which small deep infarcts (SDIs) are of lacunar, arterial, or cardioembolic etiology is challenging, but important in delivering optimal stroke prevention therapy. We sought to distinguish lacunar from nonlacunar causes of SDIs using a gene expression profile. METHODS: A total of 184 ischemic strokes were analyzed. Lacunar stroke was defined as a lacunar syndrome with infarction <15mm in a region supplied by penetrating arteries. RNA from blood was processed on whole genome microarrays. Genes differentially expressed between lacunar (n = 30) and nonlacunar strokes (n = 86) were identified (false discovery rate ≤ 0.05, fold change >|1.5|) and used to develop a prediction model. The model was evaluated by cross-validation and in a second test cohort (n = 36). The etiology of SDIs of unclear cause (SDIs ≥ 15mm or SDIs with potential embolic source) (n = 32) was predicted using the derived model. RESULTS: A 41-gene profile discriminated lacunar from nonlacunar stroke with >90% sensitivity and specificity. Of the 32 SDIs of unclear cause, 15 were predicted to be lacunar, and 17 were predicted to be nonlacunar. The identified profile represents differences in immune response between lacunar and nonlacunar stroke. INTERPRETATION: Profiles of differentially expressed genes can distinguish lacunar from nonlacunar stroke. SDIs of unclear cause were frequently predicted to be of nonlacunar etiology, suggesting that comprehensive workup of SDIs is important to identify potential cardioembolic and arterial causes. Further study is required to evaluate the gene profile in an independent cohort and determine the clinical and treatment implications of SDIs of predicted nonlacunar etiology.