Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 62(6): 1206-1216, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38253336

RESUMO

OBJECTIVES: Many reverse transcription polymerase chain reaction (RT-PCR) methods exist that can detect SARS-CoV-2 RNA in different matrices. RT-PCR is highly sensitive, although viral RNA may be detected long after active infection has taken place. SARS-CoV-2 proteins have shorter detection windows hence their detection might be more meaningful. Given salivary droplets represent a main source of transmission, we explored the detection of viral RNA and protein using four different detection platforms including SISCAPA peptide immunoaffinity liquid chromatography-mass spectrometry (SISCAPA-LC-MS) using polyclonal capture antibodies. METHODS: The SISCAPA-LC MS method was compared to RT-PCR, RT-loop-mediated isothermal amplification (RT-LAMP), and a lateral flow rapid antigen test (RAT) for the detection of virus material in the drool saliva of 102 patients hospitalised after infection with SARS-CoV-2. Cycle thresholds (Ct) of RT-PCR (E gene) were compared to RT-LAMP time-to-positive (TTP) (NE and Orf1a genes), RAT optical densitometry measurements (test line/control line ratio) and to SISCAPA-LC-MS for measurements of viral protein. RESULTS: SISCAPA-LC-MS showed low sensitivity (37.7 %) but high specificity (89.8 %). RAT showed lower sensitivity (24.5 %) and high specificity (100 %). RT-LAMP had high sensitivity (83.0 %) and specificity (100.0 %). At high initial viral RNA loads (<20 Ct), results obtained using SISCAPA-LC-MS correlated with RT-PCR (R2 0.57, p-value 0.002). CONCLUSIONS: Detection of SARS-CoV-2 nucleoprotein in saliva was less frequent than the detection of viral RNA. The SISCAPA-LC-MS method allowed processing of multiple samples in <150 min and was scalable, enabling high throughput.


Assuntos
COVID-19 , Espectrometria de Massas , Técnicas de Diagnóstico Molecular , RNA Viral , SARS-CoV-2 , Saliva , Humanos , Saliva/virologia , Saliva/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virologia , RNA Viral/análise , Espectrometria de Massas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Masculino , Sensibilidade e Especificidade , Feminino , Pessoa de Meia-Idade , Fosfoproteínas/análise , Fosfoproteínas/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Antígenos Virais/análise , Antígenos Virais/imunologia , Adulto , Cromatografia Líquida/métodos
2.
Anal Chem ; 94(50): 17379-17387, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36490367

RESUMO

The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental set-ups. Here, we build on our Cov-MS effort using LC-MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The Cov2MS assay is compatible with most matrices including nasopharyngeal swabs, saliva, and plasma and has increased sensitivity into the attomole range, a 1000-fold improvement compared to direct detection in a matrix. A strong positive correlation was observed with qPCR detection beyond a quantification cycle of 30-31, the level where no live virus can be cultured. The automatable sample preparation and reduced LC dependency allow analysis of up to 500 samples per day per instrument. Importantly, peptide enrichment allows detection of the N protein in pooled samples without sensitivity loss. Easily multiplexed, we detect variants and propose targets for Influenza A and B detection. Thus, the Cov2MS assay can be adapted to test for many different pathogens in pooled samples, providing longitudinal epidemiological monitoring of large numbers of pathogens within a population as an early warning system.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Espectrometria de Massas/métodos , Peptídeos , Sensibilidade e Especificidade
3.
Clin Chem ; 64(4): 697-704, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29321128

RESUMO

BACKGROUND: Lipoprotein-associated phospholipase A2 (Lp-PLA2), an enzyme associated with inflammation, is used as a biomarker for cardiovascular disease risk. Both the concentration and activity of Lp-PLA2 have been shown to be clinically relevant. However, there is a discordance between the serum concentration of Lp-PLA2 measured by the standard ELISA-based immunoassays and the activity of this enzyme, leading to substantial discordance in risk categorization depending on assay format. METHODS: We developed 2 LC-MS/MS-based assays to quantify serum Lp-PLA2 activity (multiple reaction monitoring detection of product) and concentration [stable isotope standards and capture by antipeptide antibody (SISCAPA) immunoaffinity], and we investigated their correlation to commercially offered colorimetric activity and immunometric concentrations assays. Associations between Lp-PLA2 and lipoproteins and the effect of selected detergents in liberating Lp-PLA2 were evaluated by use of immunoprecipitation and Western blot analyses. RESULTS: Serum Lp-PLA2 concentrations measured by quantitative SISCAPA-mass spectrometry were substantially higher than concentrations typically measured by immunoassay and showed an improved agreement with Lp-PLA2 activity. With detergents, liberation of Lp-PLA2 from lipoprotein complexes dramatically increased the amount of protein detected by immunoassay and improved the agreement with activity measurements. CONCLUSIONS: Quantitative analysis of Lp-PLA2 concentration and activity by LC-MS/MS assays provided key insight into resolving the well-documented discordance between Lp-PLA2 concentration (determined by immunoassay) and activity. Quantitative detection of Lp-PLA2 by immunoassay appears to be strongly inhibited by interaction of Lp-PLA2 with lipoprotein. Together, the results illustrate the advantages of quantitative LC-MS/MS for measurement of Lp-PLA2 concentration (by SISCAPA) and activity (by direct product detection).


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Cromatografia Líquida/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Espectrometria de Massas em Tandem/métodos , Western Blotting , Colesterol/sangue , Detergentes/química , Humanos , Imunoprecipitação , Lipoproteínas/sangue
4.
Expert Rev Proteomics ; 13(7): 673-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27341553

RESUMO

INTRODUCTION: Aided by the advent of advanced mass spectrometry (MS)-based technologies and methodologies, quantitative proteomics has emerged as a viable technique to capture meaningful data for candidate biomarker evaluation. To aid clinical translation, these methods generally utilize a bottom-up strategy with isotopically labeled standards and a targeted form of MS measurement. AREAS COVERED: This article reviews the status, challenges, requirements, and potential of translating current, MS-based methods to the clinical laboratory. The described methods are discussed and contrasted within a fit-for-purpose approach, while different resources for quality control, quantitative analysis, and data interpretation are additionally provided. Expert commentary: Although great strides have been made over the past five years in developing reliable quantitative assays for plasma protein biomarkers, it is crucial for investigators to have an understanding of the clinical validation process, a major roadblock in translational research. Continued progress in method design and validation of protein assays is necessary to ultimately achieve widespread adoption and regulatory approval.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/genética , Espectrometria de Massas , Proteômica , Proteínas Sanguíneas/biossíntese , Humanos
5.
Methods ; 81: 74-85, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25766926

RESUMO

A fully automated workflow was developed and validated for simultaneous quantification of the cardiovascular disease risk markers apolipoproteins A-I (apoA-I) and B-100 (apoB-100) in clinical sera. By coupling of stable-isotope standards and capture by anti-peptide antibodies (SISCAPA) for enrichment of proteotypic peptides from serum digests to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS detection, the standardized platform enabled rapid, liquid chromatography-free quantification at a relatively high throughput of 96 samples in 12h. The average imprecision in normo- and triglyceridemic serum pools was 3.8% for apoA-I and 4.2% for apoB-100 (4 replicates over 5 days). If stored properly, the MALDI target containing enriched apoA-1 and apoB-100 peptides could be re-analyzed without any effect on bias or imprecision for at least 7 days after initial analysis. Validation of the workflow revealed excellent linearity for daily calibration with external, serum-based calibrators (R(2) of 0.984 for apoA-I and 0.976 for apoB-100 as average over five days), and absence of matrix effects or interference from triglycerides, protein content, hemolysates, or bilirubins. Quantification of apoA-I in 93 normo- and hypertriglyceridemic clinical sera showed good agreement with immunoturbidimetric analysis (slope = 1.01, R(2) = 0.95, mean bias = 4.0%). Measurement of apoB-100 in the same clinical sera using both methods, however, revealed several outliers in SISCAPA-MALDI-TOF-MS measurements, possibly as a result of the lower MALDI-TOF-MS signal intensity (slope = 1.09, R(2) = 0.91, mean bias = 2.0%). The combination of analytical performance, rapid cycle time and automation potential validate the SISCAPA-MALDI-TOF-MS platform as a valuable approach for standardized and high-throughput quantification of apoA-I and apoB-100 in large sample cohorts.


Assuntos
Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Anticorpos Monoclonais , Apolipoproteína A-I/imunologia , Apolipoproteína B-100/imunologia , Biomarcadores/sangue , Calibragem , Humanos , Fluxo de Trabalho
7.
Mol Cell Proteomics ; 11(6): M111.013854, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22199228

RESUMO

The inability to quantify large numbers of proteins in tissues and biofluids with high precision, sensitivity, and throughput is a major bottleneck in biomarker studies. We previously demonstrated that coupling immunoaffinity enrichment using anti-peptide antibodies (SISCAPA) to multiple reaction monitoring mass spectrometry (MRM-MS) produces Immunoprecipitation MRM-MS (immuno-MRM-MS) assays that can be multiplexed to quantify proteins in plasma with high sensitivity, specificity, and precision. Here we report the first systematic evaluation of the interlaboratory performance of multiplexed (8-plex) immuno-MRM-MS in three independent labs. A staged study was carried out in which the effect of each processing and analysis step on assay coefficient of variance, limit of detection, limit of quantification, and recovery was evaluated. Limits of detection were at or below 1 ng/ml for the assayed proteins in 30 µl of plasma. Assay reproducibility was acceptable for verification studies, with median intra- and interlaboratory coefficients of variance above the limit of quantification of 11% and <14%, respectively, for the entire immuno-MRM-MS assay process, including enzymatic digestion of plasma. Trypsin digestion and its requisite sample handling contributed the most to assay variability and reduced the recovery of target peptides from digested proteins. Using a stable isotope-labeled protein as an internal standard instead of stable isotope-labeled peptides to account for losses in the digestion process nearly doubled assay accuracy for this while improving assay precision 5%. Our results demonstrate that multiplexed immuno-MRM-MS can be made reproducible across independent laboratories and has the potential to be adopted widely for assaying proteins in matrices as complex as plasma.


Assuntos
Proteínas Sanguíneas/química , Proteínas Sanguíneas/isolamento & purificação , Animais , Automação Laboratorial , Cromatografia de Afinidade/normas , Fator Estimulador de Colônias de Granulócitos/sangue , Humanos , Imunoprecipitação/normas , Limite de Detecção , Fragmentos de Peptídeos/química , Coelhos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/normas
8.
Nat Commun ; 15(1): 5114, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879593

RESUMO

The global scientific response to COVID 19 highlighted the urgent need for increased throughput and capacity in bioanalytical laboratories, especially for the precise quantification of proteins that pertain to health and disease. Acoustic ejection mass spectrometry (AEMS) represents a much-needed paradigm shift for ultra-fast biomarker screening. Here, a quantitative AEMS assays is presented, employing peptide immunocapture to enrich (i) 10 acute phase response (APR) protein markers from plasma, and (ii) SARS-CoV-2 NCAP peptides from nasopharyngeal swabs. The APR proteins were quantified in 267 plasma samples, in triplicate in 4.8 h, with %CV from 4.2% to 10.5%. SARS-CoV-2 peptides were quantified in triplicate from 145 viral swabs in 10 min. This assay represents a 15-fold speed improvement over LC-MS, with instrument stability demonstrated across 10,000 peptide measurements. The combination of speed from AEMS and selectivity from peptide immunocapture enables ultra-high throughput, reproducible quantitative biomarker screening in very large cohorts.


Assuntos
Biomarcadores , COVID-19 , Espectrometria de Massas , SARS-CoV-2 , Humanos , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/sangue , SARS-CoV-2/imunologia , Espectrometria de Massas/métodos , Peptídeos , Proteínas do Nucleocapsídeo de Coronavírus/análise , Fosfoproteínas
10.
Clin Chem ; 59(10): 1514-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857672

RESUMO

BACKGROUND: Biomarker validation remains one of the most challenging constraints to the development of new diagnostic assays. To facilitate biomarker validation, we previously developed a chromatography-free stable isotope standards and capture by antipeptide antibodies (SISCAPA)-MALDI assay allowing rapid, high-throughput quantification of protein analytes in large sample sets. Here we applied this assay to the measurement of a surrogate proteotypic peptide from protein C inhibitor (PCI) in sera from patients with prostate cancer. METHODS: A 2-plex SISCAPA-MALDI assay for quantification of proteotypic peptides from PCI and soluble transferrin receptor (sTfR) was used to measure these peptides in 159 trypsin-digested sera collected from 51 patients with prostate cancer. These patients had been treated with radiation with or without neoadjuvant androgen deprivation. RESULTS: Patients who experienced biochemical recurrence of prostate cancer showed decreased serum concentrations of the PCI peptide analyte within 18 months of treatment. The PCI peptide concentrations remained increased in the sera of patients who did not experience cancer recurrence. Prostate-specific antigen concentrations had no predictive value during the same time period. CONCLUSIONS: The high-throughput, liquid chromatography-free SISCAPA-MALDI assay is capable of rapid quantification of proteotypic PCI and sTfR peptide analytes in complex serum samples. Decreased serum concentrations of the PCI peptide were found to be related to recurrence of prostate cancer in patients treated with radiation with or without hormone therapy. However, a larger cohort of patients will be required for unequivocal validation of the PCI peptide as a biomarker for clinical use.


Assuntos
Peptídeos/sangue , Neoplasias da Próstata/diagnóstico , Inibidor da Proteína C/sangue , Antagonistas de Androgênios/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Estudos Longitudinais , Masculino , Recidiva Local de Neoplasia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Proteólise , Receptores da Transferrina/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Mol Cell Proteomics ; 10(4): M110.005645, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21245105

RESUMO

Stable isotope standards and capture by antipeptide antibodies (SISCAPA) couples affinity enrichment of peptides with stable isotope dilution and detection by multiple reaction monitoring mass spectrometry to provide quantitative measurement of peptides as surrogates for their respective proteins. In this report, we describe a feasibility study to determine the success rate for production of suitable antibodies for SISCAPA assays in order to inform strategies for large-scale assay development. A workflow was designed that included a multiplex immunization strategy in which up to five proteotypic peptides from a single protein target were used to immunize individual rabbits. A total of 403 proteotypic tryptic peptides representing 89 protein targets were used as immunogens. Antipeptide antibody titers were measured by ELISA and 220 antipeptide antibodies representing 89 proteins were chosen for affinity purification. These antibodies were characterized with respect to their performance in SISCAPA-multiple reaction monitoring assays using trypsin-digested human plasma matrix. More than half of the assays generated were capable of detecting the target peptide at concentrations of less than 0.5 fmol/µl in human plasma, corresponding to protein concentrations of less than 100 ng/ml. The strategy of multiplexing five peptide immunogens was successful in generating a working assay for 100% of the targeted proteins in this evaluation study. These results indicate it is feasible for a single laboratory to develop hundreds of assays per year and allow planning for cost-effective generation of SISCAPA assays.


Assuntos
Proteínas Sanguíneas/imunologia , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/sangue , Proteínas de Transporte/imunologia , Humanos , Soros Imunes , Imunoensaio/métodos , Espectrometria de Massas/métodos , Proteínas dos Microfilamentos/sangue , Proteínas dos Microfilamentos/imunologia , Técnicas de Diagnóstico Molecular , Peptídeos/imunologia , Coelhos , Sensibilidade e Especificidade
12.
Nat Commun ; 14(1): 1783, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997517

RESUMO

Current methods for detecting infections either require a sample collected from an actively infected site, are limited in the number of agents they can query, and/or yield no information on the immune response. Here we present an approach that uses temporally coordinated changes in highly-multiplexed antibody measurements from longitudinal blood samples to monitor infection events at sub-species resolution across the human virome. In a longitudinally-sampled cohort of South African adolescents representing >100 person-years, we identify >650 events across 48 virus species and observe strong epidemic effects, including high-incidence waves of Aichivirus A and the D68 subtype of Enterovirus D earlier than their widespread circulation was appreciated. In separate cohorts of adults who were sampled at higher frequency using self-collected dried blood spots, we show that such events temporally correlate with symptoms and transient inflammatory biomarker elevations, and observe the responding antibodies to persist for periods ranging from ≤1 week to >5 years. Our approach generates a rich view of viral/host dynamics, supporting novel studies in immunology and epidemiology.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Epidemias , Vírus , Adulto , Adolescente , Humanos , Viroma , Anticorpos Antivirais
13.
J Proteome Res ; 11(3): 1868-78, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22257466

RESUMO

We have investigated the precision of peptide quantitation by MALDI-TOF mass spectrometry (MS) using six pairs of proteotypic peptides (light) and same-sequence stable isotope labeled synthetic internal standards (heavy). These were combined in two types of dilution curves spanning 100-fold and 2000-fold ratios. Coefficients of variation (CV; standard deviation divided by mean value) were examined across replicate MALDI spots using a reflector acquisition method requiring 100 000 counts for the most intense peak in each summed spectrum. The CV of light/heavy peptide centroid peak area ratios determined on four replicate spots per sample, averaged across 11 points of a 100-fold dilution curve and over all six peptides, was 2.2% (ranging from 1.5 to 3.7% among peptides) at 55 fmol total (light + heavy) of each peptide applied per spot, and 2.5% at 11 fmol applied. The average CV of measurements at near-equivalence (light = heavy, the center of the dilution curve) for the six peptides was 1.0%, about 17-fold lower CV than that observed when five peptides were ratioed to a sixth peptide (i.e., a different-sequence internal standard). Response curves across the 100-fold range were not completely linear but could be closely modeled by a power law fit giving R(2) values >0.998 for all peptides. The MALDI-TOF MS method was used to determine the endogenous level of a proteotypic peptide (EDQYHYLLDR) of human protein C inhibitor (PCI) in a plasma digest after enrichment by capture on a high affinity antipeptide antibody, a technique called stable isotope standards and capture by anti-peptide antibodies (SISCAPA). The level of PCI was determined to be 770 ng/mL with a replicate measurement CV of 1.5% and a >14 000-fold target enrichment via SISCAPA-MALDI-TOF. These results indicate that MALDI-TOF technology can provide precise quantitation of high-to-medium abundance peptide biomarkers over a 100-fold dynamic range when ratioed to same-sequence labeled internal standards and enriched to near purity by specific antibody capture. The robustness and throughput of MALDI-TOF in comparison to conventional nano-LC-MS technology could enable currently impractical large-scale verification studies of protein biomarkers.


Assuntos
Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Calibragem , Humanos , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/sangue , Inibidor da Proteína C/sangue , Inibidor da Proteína C/química , Proteólise , Proteômica , Padrões de Referência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Tripsina/química
14.
J Proteome Res ; 11(12): 5642-9, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23126378

RESUMO

We investigated the utility of an SPE-MS/MS platform in combination with a modified SISCAPA workflow for chromatography-free MRM analysis of proteotypic peptides in digested human plasma. This combination of SISCAPA and SPE-MS/MS technology allows sensitive, MRM-based quantification of peptides from plasma digests with a sample cycle time of ∼7 s, a 300-fold improvement over typical MRM analyses with analysis times of 30-40 min that use liquid chromatography upstream of MS. The optimized system includes capture and enrichment to near purity of target proteotypic peptides using rigorously selected, high affinity, antipeptide monoclonal antibodies and reduction of background peptides using a novel treatment of magnetic bead immunoadsorbents. Using this method, we have successfully quantitated LPS-binding protein and mesothelin (concentrations of ∼5000 ng/mL and ∼10 ng/mL, respectively) in human plasma. The method eliminates the need for upstream liquid-chromatography and can be multiplexed, thus facilitating quantitative analysis of proteins, including biomarkers, in large sample sets. The method is ideal for high-throughput biomarker validation after affinity enrichment and has the potential for applications in clinical laboratories.


Assuntos
Proteínas Sanguíneas/análise , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas/métodos , Peptídeos/sangue , Software , Proteínas de Fase Aguda/análise , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Biomarcadores/sangue , Proteínas de Transporte/análise , Cromatografia Líquida , Proteínas Ligadas por GPI/sangue , Humanos , Glicoproteínas de Membrana/análise , Mesotelina , Proteômica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
15.
Clin Chem ; 57(4): 560-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21300740

RESUMO

BACKGROUND: Clinical proteomics presents great promise in biology and medicine because of its potential for improving our understanding of diseases at the molecular level and for detecting disease-related biomarkers for diagnosis, prognosis, and prediction of therapeutic responses. To realize its full potential to improve clinical outcome for patients, proteomic studies have to be well designed, from biosample cohorts to data and statistical analyses. One key component in the biomarker development pipeline is the understanding of the regulatory science that evaluates diagnostic assay performance through rigorous analytical and clinical review criteria. CONTENT: The National Cancer Institute's Clinical Proteomic Technologies for Cancer (CPTC) initiative has proposed an intermediate preclinical "verification" step to close the gap between protein-based biomarker discovery and clinical qualification. In collaboration with the US Food and Drug Administration (FDA), the CPTC network investigators recently published 2 mock submission review documents, first-of-their-kind educational materials that may help the scientific community interested in developing products for the clinic in understanding the likely analytical evaluation requirements for multiplex protein technology-based diagnostic tests. CONCLUSIONS: Building on this momentum, the CPTC continues with this report its collaboration with the FDA, as well as its interactions with the AACC and the Centers for Medicare and Medicaid Services, to further the understanding of regulatory requirements for approving multiplex proteomic platform-based tests and analytically validating multiple analytes.


Assuntos
Biomarcadores/análise , Proteínas/análise , Reprodutibilidade dos Testes
16.
Mol Cell Proteomics ; 8(5): 995-1005, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19196707

RESUMO

A SISCAPA (stable isotope standards and capture by anti-peptide antibodies) method for specific antibody-based capture of individual tryptic peptides from a digest of whole human plasma was developed using a simplified magnetic bead protocol and a novel rotary magnetic bead trap device. Following off-line equilibrium binding of peptides by antibodies and subsequent capture of the antibodies on magnetic beads, the bead trap permitted washing of the beads and elution of bound peptides inside a 150-microm-inner diameter capillary that forms part of a nanoflow LC-MS/MS system. The bead trap sweeps beads against the direction of liquid flow using a continuous succession of moving high magnetic field-gradient trap regions while mixing the beads with the flowing liquid. This approach prevents loss of low abundance captured peptides and allows automated processing of a series of SISCAPA reactions. Selected tryptic peptides of alpha(1)-antichymotrypsin and lipopolysaccharide-binding protein were enriched relative to a high abundance serum albumin peptide by 1,800 and 18,000-fold, respectively, as measured by multiple reaction monitoring. A large majority of the peptides that are bound nonspecifically in SISCAPA reactions were shown to bind to components other than the antibody (e.g. the magnetic beads), suggesting that substantial improvement in enrichment could be achieved by development of improved inert bead surfaces.


Assuntos
Anticorpos/imunologia , Separação Imunomagnética/instrumentação , Separação Imunomagnética/métodos , Marcação por Isótopo , Magnetismo , Microesferas , Peptídeos/análise , Proteínas Sanguíneas/análise , Cromatografia Líquida , Fluoresceína , Humanos , Espectrometria de Massas , Microfluídica
17.
Mol Cell Proteomics ; 8(8): 1860-77, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19411661

RESUMO

Mass spectrometry-based multiple reaction monitoring (MRM) quantitation of proteins can dramatically impact the discovery and quantitation of biomarkers via rapid, targeted, multiplexed protein expression profiling of clinical samples. A mixture of 45 peptide standards, easily adaptable to common plasma proteomics work flows, was created to permit absolute quantitation of 45 endogenous proteins in human plasma trypsin digests. All experiments were performed on simple tryptic digests of human EDTA-plasma without prior affinity depletion or enrichment. Stable isotope-labeled standard peptides were added immediately following tryptic digestion because addition of stable isotope-labeled standard peptides prior to trypsin digestion was found to generate elevated and unpredictable results. Proteotypic tryptic peptides containing isotopically coded amino acids ([(13)C(6)]Arg or [(13)C(6)]Lys) were synthesized for all 45 proteins. Peptide purity was assessed by capillary zone electrophoresis, and the peptide quantity was determined by amino acid analysis. For maximum sensitivity and specificity, instrumental parameters were empirically determined to generate the most abundant precursor ions and y ion fragments. Concentrations of individual peptide standards in the mixture were optimized to approximate endogenous concentrations of analytes and to ensure the maximum linear dynamic range of the MRM assays. Excellent linear responses (r > 0.99) were obtained for 43 of the 45 proteins with attomole level limits of quantitation (<20% coefficient of variation) for 27 of the 45 proteins. Analytical precision for 44 of the 45 assays varied by <10%. LC-MRM/MS analyses performed on 3 different days on different batches of plasma trypsin digests resulted in coefficients of variation of <20% for 42 of the 45 assays. Concentrations for 39 of the 45 proteins are within a factor of 2 of reported literature values. This mixture of internal standards has many uses and can be applied to the characterization of trypsin digestion kinetics and plasma protein expression profiling because 31 of the 45 proteins are putative biomarkers of cardiovascular disease.


Assuntos
Proteínas Sanguíneas/análise , Proteômica/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/normas , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Humanos , Masculino , Espectrometria de Massas/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Tripsina/metabolismo
18.
Mol Cell Proteomics ; 8(5): 883-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19131327

RESUMO

The lack of sensitive, specific, multiplexable assays for most human proteins is the major technical barrier impeding development of candidate biomarkers into clinically useful tests. Recent progress in mass spectrometry-based assays for proteotypic peptides, particularly those with specific affinity peptide enrichment, offers a systematic and economical path to comprehensive quantitative coverage of the human proteome. A complete suite of assays, e.g. two peptides from the protein product of each of the approximately 20,500 human genes (here termed the human Proteome Detection and Quantitation project), would enable rapid and systematic verification of candidate biomarkers and lay a quantitative foundation for subsequent efforts to define the larger universe of splice variants, post-translational modifications, protein-protein interactions, and tissue localization.


Assuntos
Proteoma/análise , Biomarcadores/análise , Humanos , Espectrometria de Massas , Projetos Piloto , Proteoma/química , Proteômica
19.
JACS Au ; 1(6): 750-765, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254058

RESUMO

Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by reverse transcription polymerase chain reaction (RT-PCR). Although this is efficient, automatable, and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using mass spectrometry (MS). We established the Cov-MS consortium, consisting of 15 academic laboratories and several industrial partners to increase applicability, accessibility, sensitivity, and robustness of this kind of SARS-CoV-2 detection. This, in turn, gave rise to the Cov-MS Digital Incubator that allows other laboratories to join the effort, navigate, and share their optimizations and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.

20.
Clin Chem ; 56(2): 177-85, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19884488

RESUMO

An analysis of all US Food and Drug Administration (FDA) approvals for protein-based assays through 2008 reveals 109 unique protein targets in plasma or serum, as well as 62 additional tests for peptides, protein posttranslational modifications, protein complexes, autoantibodies against endogenous proteins, and blood cell proteins. A further 96 unique protein targets are assayed in plasma by laboratory-developed tests available for clinical use in the US, yielding a total of 205 proteins that include products of approximately 211 genes (excluding immunoglobulins). These tests provide quantitative measurements for approximately 1% of the human protein gene products, defining a practical clinical plasma proteome. The rate of introduction of new protein analytes has remained essentially flat over the past 15 years, averaging 1.5 new proteins per year (median of 1 per year). This rate falls far short of that needed to support projected medical needs and indicates serious deficiencies in the protein biomarker pipeline, from which no proteomics-discovered analytes have yet emerged.


Assuntos
Proteínas Sanguíneas/análise , Técnicas de Laboratório Clínico/métodos , Testes Diagnósticos de Rotina/métodos , Proteoma/análise , Proteômica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA