Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(12): 1988-2004, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36795052

RESUMO

SURF1 deficiency (OMIM # 220110) causes Leigh syndrome (LS, OMIM # 256000), a mitochondrial disorder typified by stress-induced metabolic strokes, neurodevelopmental regression and progressive multisystem dysfunction. Here, we describe two novel surf1-/- zebrafish knockout models generated by CRISPR/Cas9 technology. While gross larval morphology, fertility, and survival into adulthood appeared unaffected, surf1-/- mutants manifested adult-onset ocular anomalies and decreased swimming activity, as well as classical biochemical hallmarks of human SURF1 disease, including reduced complex IV expression and enzymatic activity and increased tissue lactate. surf1-/- larvae also demonstrated oxidative stress and stressor hypersensitivity to the complex IV inhibitor, azide, which exacerbated their complex IV deficiency, reduced supercomplex formation, and induced acute neurodegeneration typical of LS including brain death, impaired neuromuscular responses, reduced swimming activity, and absent heartrate. Remarkably, prophylactic treatment of surf1-/- larvae with either cysteamine bitartrate or N-acetylcysteine, but not other antioxidants, significantly improved animal resiliency to stressor-induced brain death, swimming and neuromuscular dysfunction, and loss of heartbeat. Mechanistic analyses demonstrated cysteamine bitartrate pretreatment did not improve complex IV deficiency, ATP deficiency, or increased tissue lactate but did reduce oxidative stress and restore glutathione balance in surf1-/- animals. Overall, two novel surf1-/- zebrafish models recapitulate the gross neurodegenerative and biochemical hallmarks of LS, including azide stressor hypersensitivity that was associated with glutathione deficiency and ameliorated by cysteamine bitartrate or N-acetylcysteine therapy.


Assuntos
Deficiência de Citocromo-c Oxidase , Doença de Leigh , Animais , Adulto , Humanos , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Doença de Leigh/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Acetilcisteína , Cisteamina/farmacologia , Azidas/metabolismo , Morte Encefálica , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glutationa/metabolismo , Lactatos
2.
Nature ; 502(7471): 385-8, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24056935

RESUMO

Nucleic-acid-binding proteins are generally viewed as either specific or nonspecific, depending on characteristics of their binding sites in DNA or RNA. Most studies have focused on specific proteins, which identify cognate sites by binding with highest affinities to regions with defined signatures in sequence, structure or both. Proteins that bind to sites devoid of defined sequence or structure signatures are considered nonspecific. Substrate binding by these proteins is poorly understood, and it is not known to what extent seemingly nonspecific proteins discriminate between different binding sites, aside from those sequestered by nucleic acid structures. Here we systematically examine substrate binding by the apparently nonspecific RNA-binding protein C5, and find clear discrimination between different binding site variants. C5 is the protein subunit of the transfer RNA processing ribonucleoprotein enzyme RNase P from Escherichia coli. The protein binds 5' leaders of precursor tRNAs at a site without sequence or structure signatures. We measure functional binding of C5 to all possible sequence variants in its substrate binding site, using a high-throughput sequencing kinetics approach (HITS-KIN) that simultaneously follows processing of thousands of RNA species. C5 binds different substrate variants with affinities varying by orders of magnitude. The distribution of functional affinities of C5 for all substrate variants resembles affinity distributions of highly specific nucleic acid binding proteins. Unlike these specific proteins, C5 does not bind its physiological RNA targets with the highest affinity, but with affinities near the median of the distribution, a region that is not associated with a sequence signature. We delineate defined rules governing substrate recognition by C5, which reveal specificity that is hidden in cellular substrates for RNase P. Our findings suggest that apparently nonspecific and specific RNA-binding modes may not differ fundamentally, but represent distinct parts of common affinity distributions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , RNA de Transferência/metabolismo , Ribonuclease P/metabolismo , Regiões 5' não Traduzidas/genética , Sequência de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Especificidade por Substrato
3.
J Biol Chem ; 290(13): 8121-32, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25645937

RESUMO

We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [(13)C2,(2)H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [(13)C6]glucose or [1,2-(13)C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-(13)C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.


Assuntos
Acetilcoenzima A/metabolismo , Carnitina O-Acetiltransferase/metabolismo , Miocárdio/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Animais , Isótopos de Carbono/metabolismo , Deutério/metabolismo , Glucose-6-Fosfato/metabolismo , Glicólise , Técnicas In Vitro , Corpos Cetônicos/metabolismo , Masculino , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
4.
Biochim Biophys Acta ; 1854(11): 1729-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26051088

RESUMO

The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.


Assuntos
Algoritmos , Enzimas/química , Modelos Químicos , Biocatálise , Enzimas/metabolismo , Isótopos/química , Cinética , Ligação Proteica , RNA/química , RNA/metabolismo , Ribonuclease P/química , Ribonuclease P/metabolismo , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 110(32): 13002-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878223

RESUMO

Enzymes function by stabilizing reaction transition states; therefore, comparison of the transition states of enzymatic and nonenzymatic model reactions can provide insight into biological catalysis. Catalysis of RNA 2'-O-transphosphorylation by ribonuclease A is proposed to involve electrostatic stabilization and acid/base catalysis, although the structure of the rate-limiting transition state is uncertain. Here, we describe coordinated kinetic isotope effect (KIE) analyses, molecular dynamics simulations, and quantum mechanical calculations to model the transition state and mechanism of RNase A. Comparison of the (18)O KIEs on the 2'O nucleophile, 5'O leaving group, and nonbridging phosphoryl oxygens for RNase A to values observed for hydronium- or hydroxide-catalyzed reactions indicate a late anionic transition state. Molecular dynamics simulations using an anionic phosphorane transition state mimic suggest that H-bonding by protonated His12 and Lys41 stabilizes the transition state by neutralizing the negative charge on the nonbridging phosphoryl oxygens. Quantum mechanical calculations consistent with the experimental KIEs indicate that expulsion of the 5'O remains an integral feature of the rate-limiting step both on and off the enzyme. Electrostatic interactions with positively charged amino acid site chains (His12/Lys41), together with proton transfer from His119, render departure of the 5'O less advanced compared with the solution reaction and stabilize charge buildup in the transition state. The ability to obtain a chemically detailed description of 2'-O-transphosphorylation transition states provides an opportunity to advance our understanding of biological catalysis significantly by determining how the catalytic modes and active site environments of phosphoryl transferases influence transition state structure.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA/química , Ribonuclease Pancreático/química , Biocatálise , Esterificação , Cinética , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Isótopos de Oxigênio/química , Isótopos de Oxigênio/metabolismo , Fosforilação , RNA/metabolismo , Ribonuclease Pancreático/metabolismo
6.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39026824

RESUMO

N-linked glycoproteins function in numerous biological processes, modulating enzyme activities as well as protein folding, stability, oligomerization, and trafficking. While N-glycosylation of mitochondrial proteins has been detected by untargeted MS-analyses, the physiological existence and roles of mitochondrial protein N-linked glycosylation remain under debate. Here, we report that MRS2, a mitochondrial inner membrane protein that functions as the high flux magnesium transporter, is N-glycosylated to various extents depending on cellular bioenergetic status. Both N-glycosylated and unglycosylated isoforms were consistently detected in mitochondria isolated from mouse liver, rat and mouse liver fibroblast cells (BRL 3A and AFT024, respectively) as well as human skin fibroblast cells. Immunoblotting of MRS2 showed it was bound to, and required stringent elution conditions to remove from, lectin affinity columns with covalently bound concanavalin A or Lens culinaris agglutinin. Following peptide:N-glycosidase F (PNGase F) digestion of the stringently eluted proteins, the higher Mr MRS2 bands gel-shifted to lower Mr and loss of lectin affinity was seen. BRL 3A cells treated with two different N-linked glycosylation inhibitors, tunicamycin or 6-diazo-5-oxo-l-norleucine, resulted in decreased intensity or loss of the higher Mr MRS2 isoform. To investigate the possible functional role of MRS2 N- glycosylation, we measured rapid Mg2+ influx capacity in intact mitochondria isolated from BRL 3A cells in control media or following treatment with tunicamycin or 6-diazo-5-oxo-l-norleucine. Interestingly, rapid Mg2+ influx capacity increased in mitochondria isolated from BRL 3A cells treated with either N-glycosylation inhibitor. Forcing reliance on mitochondrial respiration by treatment with either galactose media or the glycolytic inhibitor 2-deoxyglucose or by minimizing glucose concentration similarly reduced the N-glycosylated isoform of MRS2, with a correlated concomitant increase in rapid Mg2+ influx capacity. Conversely, inhibiting mitochondrial energy production in BRL 3A cells with either rotenone or oligomycin resulted in an increased fraction of N-glycosylated MRS2, with decreased rapid Mg2+ influx capacity. Collectively, these data provide strong evidence that MRS2 N-glycosylation is directly involved in the regulation of mitochondrial matrix Mg2+, dynamically communicating relative cellular nutrient status and bioenergetic capacity by serving as a physiologic brake on the influx of mitochondrial matrix Mg2+ under conditions of glucose excess or mitochondrial bioenergetic impairment.

7.
Chem Res Toxicol ; 26(2): 213-20, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23171137

RESUMO

We recently reported that levulinate (4-ketopentanoate) is converted in the liver to 4-hydroxypentanoate, a drug of abuse, and that the formation of 4-hydroxypentanoate is stimulated by ethanol oxidation. We also identified 3 parallel ß-oxidation pathways by which levulinate and 4-hydroxypentanoate are catabolized to propionyl-CoA and acetyl-CoA. We now report that levulinate forms three seven-carbon cyclical CoA esters by processes starting with the elongation of levulinyl-CoA by acetyl-CoA to 3,6-diketoheptanoyl-CoA. The latter γ-diketo CoA ester undergoes two parallel cyclization processes. One process yields a mixture of tautomers, i.e., cyclopentenyl- and cyclopentadienyl-acyl-CoAs. The second cyclization process yields a methyl-pyrrolyl-acetyl-CoA containing a nitrogen atom derived from the ε-nitrogen of lysine but without carbons from lysine. The cyclic CoA esters were identified in rat livers perfused with levulinate and in livers and brains from rats gavaged with calcium levulinate ± ethanol. Lastly, 3,6-diketoheptanoyl-CoA, like 2,5-diketohexane, pyrrolates free lysine and, presumably, lysine residues from proteins. This may represent a new pathway for protein pyrrolation. The cyclic CoA esters and related pyrrolation processes may play a role in the toxic effects of 4-hydroxypentanoate.


Assuntos
Coenzima A/metabolismo , Inibidores Enzimáticos/metabolismo , Ácidos Levulínicos/metabolismo , Pró-Fármacos/metabolismo , Animais , Encéfalo/metabolismo , Coenzima A/química , Ciclização , Inibidores Enzimáticos/química , Ácidos Levulínicos/química , Fígado/metabolismo , Masculino , Metabolômica , Pró-Fármacos/química , Ratos , Ratos Sprague-Dawley
8.
Biochem J ; 444(2): 333-41, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22428548

RESUMO

GHB (γ-hydroxybutyrate) is both a neurotransmitter and a drug of abuse (date-rape drug). We investigated the catabolism of this compound in perfused rat livers. Using a combination of metabolomics and mass isotopomer analysis, we showed that GHB is metabolized by multiple processes, in addition to its previously reported metabolism in the citric acid cycle via oxidation to succinate. A substrate cycle operates between GHB and γ-aminobutyrate via succinic semialdehyde. Also, GHB undergoes (i) ß-oxidation to glycolyl-CoA+acetyl-CoA, (ii) two parallel processes which remove C-1 or C-4 of GHB and form 3-hydroxypropionate from C-2+C-3+C-4 or from C-1+C-2+C-3 of GHB, and (iii) degradation to acetyl-CoA via 4-phosphobutyryl-CoA. The present study illustrates the potential of the combination of metabolomics and mass isotopomer analysis for pathway discovery.


Assuntos
Fígado/metabolismo , Perfusão , Oxibato de Sódio/metabolismo , Animais , Fígado/enzimologia , Perfusão/métodos , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
9.
J Biol Chem ; 286(7): 5895-904, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21126961

RESUMO

Calcium levulinate (4-ketopentanoate) is used as an oral and parenteral source of calcium. We hypothesized that levulinate is converted in the liver to 4-hydroxypentanoate, a new drug of abuse, and that this conversion is accelerated by ethanol oxidation. We confirmed these hypotheses in live rats, perfused rat livers, and liver subcellular preparations. Levulinate is reduced to (R)-4-hydroxypentanoate by a cytosolic and a mitochondrial dehydrogenase, which are NADPH- and NADH-dependent, respectively. A mitochondrial dehydrogenase or racemase system also forms (S)-4-hydroxypentanoate. In livers perfused with [(13)C(5)]levulinate, there was substantial CoA trapping in levulinyl-CoA, 4-hydroxypentanoyl-CoA, and 4-phosphopentanoyl-CoA. This CoA trapping was increased by ethanol, with a 6-fold increase in the concentration of 4-phosphopentanoyl-CoA. Levulinate is catabolized by 3 parallel pathways to propionyl-CoA, acetyl-CoA, and lactate. Most intermediates of the 3 pathways were identified by mass isotopomer analysis and metabolomics. The production of 4-hydroxypentanoate from levulinate and its stimulation by ethanol is a potential public health concern.


Assuntos
Cálcio/farmacologia , Inibidores Enzimáticos/farmacocinética , Ácidos Levulínicos/farmacocinética , Fígado/enzimologia , Ácidos Pentanoicos/metabolismo , Transtornos Relacionados ao Uso de Substâncias , Animais , Depressores do Sistema Nervoso Central/farmacologia , Citoplasma/enzimologia , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Etanol/farmacologia , Ácidos Levulínicos/efeitos adversos , Ácidos Levulínicos/farmacologia , Masculino , Mitocôndrias Hepáticas/enzimologia , Oxirredução , Ácidos Pentanoicos/efeitos adversos , Perfusão , Ratos , Ratos Sprague-Dawley
10.
J Biol Chem ; 286(46): 40013-24, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21917928

RESUMO

Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through ß-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.


Assuntos
Galinhas/metabolismo , Glicólise/fisiologia , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Adipogenia/fisiologia , Animais , Embrião de Galinha , Galinhas/genética , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio/fisiologia , PPAR gama/genética , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica/fisiologia
11.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36278487

RESUMO

Dihydrolipoamide dehydrogenase (DLD) deficiency is a recessive mitochondrial disorder caused by depletion of DLD from α-ketoacid dehydrogenase complexes. Caenorhabditis elegans animal models of DLD deficiency generated by graded feeding of dld-1(RNAi) revealed that full or partial reduction of DLD-1 expression recapitulated increased pyruvate levels typical of pyruvate dehydrogenase complex deficiency and significantly altered animal survival and health, with reductions in brood size, adult length, and neuromuscular function. DLD-1 deficiency dramatically increased mitochondrial unfolded protein stress response induction and adaptive mitochondrial proliferation. While ATP levels were reduced, respiratory chain enzyme activities and in vivo mitochondrial membrane potential were not significantly altered. DLD-1 depletion directly correlated with the induction of mitochondrial stress and impairment of worm growth and neuromuscular function. The safety and efficacy of dichloroacetate, thiamine, riboflavin, 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR), l-carnitine, and lipoic acid supplemental therapies empirically used for human DLD disease were objectively evaluated by life span and mitochondrial stress response studies. Only dichloroacetate and thiamine showed individual and synergistic therapeutic benefits. Collectively, these C. elegans dld-1(RNAi) animal model studies demonstrate the translational relevance of preclinical modeling of disease mechanisms and therapeutic candidates. Results suggest that clinical trials are warranted to evaluate the safety and efficacy of dichloroacetate and thiamine in human DLD disease.


Assuntos
Tiamina , Ácido Tióctico , Adulto , Animais , Humanos , Caenorhabditis elegans/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Riboflavina , Carnitina , Piruvatos , Trifosfato de Adenosina
12.
J Lipid Res ; 52(1): 125-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20858593

RESUMO

Cardiolipin (CL) is a phospholipid predominantly found in the mitochondrial inner membrane and is associated structurally with individual complexes of the electron transport chain (ETC). Because the ETC is the major mitochondrial reactive oxygen species (ROS)-generating site, the proximity to the ETC and bisallylic methylenes of the PUFA chains of CL make it a likely target of ROS in the mitochondrial inner membrane. Oxidized cellular CL products, uniquely derived from ROS-induced autoxidation, could serve as biomarkers for the presence of the ROS and could help in the understanding of the mechanism of oxidative stress. Because major CL species have four unsaturated acyl chains, whereas other phospholipids usually have only one in the sn-2 position, characterization of oxidized CL is highly challenging. In the current study, we exposed CL, under aerobic conditions, to singlet oxygen (¹O2), the radical initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride, or room air, and the oxidized CL species were characterized by HPLC-tandem mass spectrometry (MS/MS). Our reverse-phase ion-pair HPLC-MS/MS method can characterize the major and minor oxidized CL species by detecting distinctive fragment ions associated with specific oxidized species. The HPLC-MS/MS results show that monohydroperoxides and bis monohydroperoxides were generated under all three conditions. However, significant amounts of CL dihydroperoxides were produced only by ¹O2-mediated oxidation. These products were barely detectable from radical oxidation either in a liposome bilayer or in thin film. These observations are only possible due to the chromatographic separation of the different oxidized species.


Assuntos
Cardiolipinas/química , Amidinas/química , Amidinas/metabolismo , Cardiolipinas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo , Espectrometria de Massas em Tandem
13.
PLoS Pathog ; 5(1): e1000265, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19148273

RESUMO

SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP's binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites.


Assuntos
Proteínas de Insetos/metabolismo , Oligopeptídeos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Anopheles/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Malária/transmissão , Oligopeptídeos/química , Plasmodium falciparum/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Glândulas Salivares/parasitologia , Esporozoítos/fisiologia
14.
Mol Cell Proteomics ; 8(12): 2653-63, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19724074

RESUMO

Proteomics investigations typically yield information regarding static gene expression profiles. The central issues that limit the study of proteome dynamics include how to (i) administer a labeled amino acid in vivo, (ii) measure the isotopic labeling of a protein(s) (which may be low), and (iii) reliably interpret the precursor/product labeling relationships. In this study, we demonstrate the potential of quantifying proteome dynamics by coupling the administration of stable isotopes with mass spectrometric assays. Although the direct administration of a labeled amino acid(s) is typically used to measure protein synthesis, we explain the application of labeled water, comparing (2)H(2)O versus H(2)(18)O for measuring albumin biosynthesis in vivo. This application emphasizes two distinct advantages of using labeled water over a labeled amino acid(s). First, in long term studies (e.g. days or weeks), it is not practical to continuously administer a labeled amino acid(s); however, in the presence of labeled water, organisms will generate labeled amino acids. Second, to calculate rates of protein synthesis in short term studies (e.g. hours), one must utilize a precursor/product labeling ratio; when using labeled water it is possible to reliably identify and easily measure the precursor labeling (i.e. water). We demonstrate that labeled water permits studies of protein synthesis (e.g. albumin synthesis in mice) during metabolic "steady-state" or "non-steady-state" conditions, i.e. integrating transitions between the fed and fasted state or during an acute perturbation (e.g. following a meal), respectively. We expect that the use of labeled water is applicable to wide scale investigations of proteome dynamics and can therein be used to obtain a functional image of gene expression in vivo.


Assuntos
Proteoma/análise , Proteômica/métodos , Água/metabolismo , Albuminas/química , Albuminas/metabolismo , Sequência de Aminoácidos , Animais , Deutério/metabolismo , Marcação por Isótopo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Isótopos de Oxigênio/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Tripsina/metabolismo
15.
Biochemistry ; 49(13): 2869-79, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20180599

RESUMO

Accurate identification and quantification of metal ion-phosphodiester interactions are essential for understanding the role of metal ions as determinants of three-dimensional folding of large RNAs and as cofactors in the active sites of both RNA and protein phosphodiesterases. Accomplishing this goal is difficult due to the dynamic and complex mixture of direct and indirect interactions formed with nucleic acids and other phosphodiesters in solution. To address this issue, Raman spectroscopy has been used to measure changes in bond vibrational energies due to metal interactions. However, the contributions of inner-sphere, H-bonding, and electrostatic interactions to the Raman spectrum of phosphoryl oxygens have not been analyzed quantitatively. Here, we report that all three forms of metal ion interaction result in attenuation of the Raman signal for the symmetric vibration of the nonbridging phosphate oxygens (nu(s)PO(2)(-)), while only inner-sphere coordination gives rise to an apparent shift of nu(s)PO(2)(-) to higher wavenumbers (nu(s)PO(2)(-)M) in solution. Formation of nu(s)PO(2)(-)M is shown to be both dependent on metal ion identity and an accurate measure of site-specific metal ion binding. In addition, the spectroscopic parameter reflecting the energetic difference between nu(s)PO(2)(-) and nu(s)PO(2)(-)M (DeltanuM) is largely insensitive to changes in phosphodiester structure but strongly dependent on the absolute electronegativity and hardness of the interacting metal ion. Together, these studies provide strong experimental support for the use of nu(s)PO(2)(-)M and DeltanuM as general spectroscopic features for the quantitative analysis of metal binding affinity and the identification of metal ions associated with phosphodiesters in solution.


Assuntos
Metais/química , Organofosfatos/química , Análise Espectral Raman/métodos , Ligação de Hidrogênio , Estrutura Molecular , Ácidos Nucleicos/química , Soluções , Eletricidade Estática
16.
J Am Chem Soc ; 132(33): 11613-21, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20669950

RESUMO

To better understand the interactions between catalysts and transition states during RNA strand cleavage, primary (18)O kinetic isotope effects (KIEs) and solvent D(2)O isotope effects were measured to probe the mechanism of base-catalyzed 2'-O-transphosphorylation of the RNA dinucleotide 5'-UpG-3'. The observed (18)O KIEs for the nucleophilic 2'-O and in the 5'-O leaving group at pH 14 are both large relative to reactions of phosphodiesters with good leaving groups, indicating that the reaction catalyzed by hydroxide has a transition state (TS) with advanced phosphorus-oxygen bond fission to the leaving group ((18)k(LG) = 1.034 +/- 0.004) and phosphorus-nucleophile bond formation ((18)k(NUC) = 0.984 +/- 0.004). A breakpoint in the pH dependence of the 2'-O-transphosphorylation rate to a pH independent phase above pH 13 has been attributed to the pK(a) of the 2'-OH nucleophile. A smaller nucleophile KIE is observed at pH 12 ((18)k(NUC) = 0.995 +/- 0.004) that is interpreted as the combined effect of the equilibrium isotope effect (ca. 1.02) on deprotonation of the 2'-hydroxyl nucleophile and the intrinsic KIE on the nucleophilic addition step (ca. 0.981). An alternative mechanism in which the hydroxide ion acts as a general base is considered unlikely given the lack of a solvent deuterium isotope effect above the breakpoint in the pH versus rate profile. These results represent the first direct analysis of the transition state for RNA strand cleavage. The primary (18)O KIE results and the lack of a kinetic solvent deuterium isotope effect together provide strong evidence for a late transition state and 2'-O nucleophile activation by specific base catalysis.


Assuntos
Hidróxidos/química , RNA/química , Concentração de Íons de Hidrogênio , Cinética , Isótopos de Oxigênio/química , Fosforilação
17.
Antimicrob Agents Chemother ; 54(4): 1414-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20086146

RESUMO

OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.


Assuntos
Inibidores Enzimáticos/farmacologia , Penicilinas/farmacologia , Inibidores de beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Domínio Catalítico , Cefaloridina/química , Cefalosporinas/química , Cefalosporinas/farmacologia , Inibidores Enzimáticos/química , Cinética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oxacilina/química , Penicilinas/química , Proteínas Recombinantes/antagonistas & inibidores , Especificidade por Substrato , Sulfonas/química , Sulfonas/farmacologia , Resistência beta-Lactâmica , beta-Lactamases/química , beta-Lactamases/classificação
18.
Chem Res Toxicol ; 23(3): 467-73, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20070074

RESUMO

2(E),4(E)-Decadienal (DDE), a lipid peroxidation product, was found to covalently modify Lys residues of different proteins by different reactions using mass spectrometry (MALDI-TOF-MS and LC-ESI-MS). DDE mainly formed Lys Schiff base adducts with cytochrome c and ribonuclease A at 10 min, but these reversibly formed adducts almost disappeared after 24 h. In contrast, beta-lactoglobulin (beta-LG) was highly modified by DDE after 24 h. In addition to the Lys Schiff base adducts, DDE formed novel Lys pyridinium adducts as well as Cys Michael adducts with beta-LG.


Assuntos
Aldeídos/efeitos adversos , Espectrometria de Massas , Proteínas/metabolismo , Sequência de Aminoácidos , Citocromos c/análise , Citocromos c/metabolismo , Lactoglobulinas/análise , Lactoglobulinas/metabolismo , Dados de Sequência Molecular , Proteínas/análise , Ribonuclease Pancreático/análise , Ribonuclease Pancreático/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Am J Physiol Endocrinol Metab ; 297(1): E260-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19401458

RESUMO

We developed a LC-MS-MS assay of the (2)H labeling of free glutathione (GSH) and bound glutathione [GSSR; which includes all DTT-reducible forms, primarily glutathione disulfide (GSSG) and mixed disulfides with proteins] and ophthalmate (an index of GSH depletion) labeled from (2)H-enriched body water. In rats whose body water was 2.5% (2)H enriched for up to 31 days, GSH labeling follows a complex pattern because of different rates of labeling of its constitutive amino acids. In rats infused with [(13)C(2),(15)N-glycine]glutathione, the rate of appearance of plasma GSH was 2.1 micromol.min(-1).kg(-1), and the half-life of plasma GSH/GSSR was 6-8 min. In healthy humans whose body fluids were 0.5% (2)H enriched, the (2)H labeling of GSH/GSSR and ophthalmate can be precisely measured after 4 h, with GSH being more rapidly labeled than GSSR. Since plasma GSH/GSSR derives mostly from liver, this technique opens the way to 2) probe noninvasively the labeling pattern and redox status of the liver GSH system in humans and 2) assess the usefulness of ophthalmate as an index of GSH depletion.


Assuntos
Água Corporal/metabolismo , Deutério/farmacocinética , Glutationa/farmacocinética , Oligopeptídeos/farmacocinética , Adulto , Animais , Óxido de Deutério/farmacocinética , Feminino , Glutationa/sangue , Glutationa/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Chem Res Toxicol ; 22(8): 1386-97, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19537826

RESUMO

Autoxidation of linoleic acid (LA) enhanced by Fe(II)/ascorbate generates unsaturated hydroperoxides which undergo further oxidative evolution resulting in a mixture of electrophiles, including epoxyketooctadecenoic acid and dienones with intact C-18 chains as well as oxidative cleavage products such as 4-hydroxy-2(E)-nonenal (HNE), 4-oxo-2(E)-nonenal (ONE), 2(E)-octenal, 9-hydroxy-12-oxo-10(E)-dodecenoic acid, 9,12-dioxo-10(E)-dodecenoic acid, and 11-oxoundec-9(E)-enoic acid. Mass spectrometric (MALDI-TOF-MS and LC-ESI-MS/MS) studies have been performed following incubation of the model protein beta-lactoglobulin with LA, Fe(II), and ascorbate, which identified adducts of these electrophiles with three different protein nucleophiles. Deuterium labeled linoleic acid 17,17,18,18,18-d(5)-(9Z,12Z)-octadeca-9,12-dienoic acid (d(5)-LA) was synthesized to facilitate the detection and characterization of the protein modifications by mass spectrometry. Reduction by NaBH(4) served to trap reversible adducts and to quantify the number of reducible functional groups in each adduct. This study, which mimics the distribution of reactive lipid peroxidation products generated by a continuous low level flux of reactive oxygen species present in vivo under conditions of oxidative stress, confirms that many irreversibly formed adducts previously identified following exposure of model proteins to pure electrophilic modifiers such as HNE and ONE are also generated during in situ oxidation of LA. These adducts include HNE-His Michael adducts (MA), ONE-Lys 4-ketoamide, ONE-Lys pyrrolinone, and a Cys/His-ONE-Lys pyrrole cross-link. However, reversibly formed adducts, such as the HNE-Lys Schiff base, are not present at detectable levels. The isotopic labeling allowed less commonly identified mirror-image adducts derived from the carboxy terminus of LA to be identified. A novel 2-octenoic acid-His MA was discovered.


Assuntos
Aldeídos/metabolismo , Ácidos Graxos Monoinsaturados/imunologia , Ácidos Graxos Monoinsaturados/metabolismo , Ácido Linoleico/metabolismo , Biologia Computacional , Cinética , Lactoglobulinas , Ácido Linoleico/imunologia , Peroxidação de Lipídeos , Espectrometria de Massas , Oxirredução , Estresse Oxidativo , Bases de Schiff
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA