Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metabolomics ; 16(10): 109, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033923

RESUMO

INTRODUCTION: Type 1 diabetes (T1D) is caused by the destruction of pancreatic islet beta cells resulting in total loss of insulin production. Recent studies have suggested that the destruction may be interrelated to plasma lipids. OBJECTIVES: Specific lipids have previously been shown to be decreased in children who develop T1D before four years of age. Disturbances of plasma lipids prior to clinical diagnosis of diabetes, if true, may provide a novel way to improve prediction, and monitor disease progression. METHODS: A lipidomic approach was utilized to analyze plasma from 67 healthy adolescent subjects (10-15 years of age) with or without islet autoantibodies but all with increased genetic risk for T1D. The study subjects were enrolled at birth in the Diabetes Prediction in Skåne (DiPiS) study and after 10-15 years of follow-up we performed the present cross-sectional analysis. HLA-DRB345, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1 genotypes were determined using next generation sequencing. Lipidomic profiles were determined using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Lipidomics data were analyzed according to genotype. RESULTS: Variation in levels of several specific phospholipid species were related to level of autoimmunity but not development of T1D. Five glycosylated ceramides were increased in insulin autoantibody (IAA) positive adolescent subjects compared to adolescent subjects without this autoantibody. Additionally, HLA genotypes seemed to influence levels of long chain triacylglycerol (TG). CONCLUSION: Lipidomic profiling of adolescent subjects in high risk of T1D may improve sub-phenotyping in this high risk population.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Lipídeos/sangue , Adolescente , Autoanticorpos/genética , Autoanticorpos/imunologia , Autoimunidade/imunologia , Criança , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Genótipo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipidômica/métodos , Masculino , Suécia/epidemiologia
2.
Immunohorizons ; 6(8): 614-629, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35981747

RESUMO

Recently, a haplotype of three single-nucleotide polymorphisms (tri-SNP) in intron 1 of the HLA-DRA1 gene was found to be strongly associated with type 1 diabetes risk in HLA-DR3/3 individuals. The tri-SNP reportedly function as "expression quantitative trait loci," modulating HLA-DR and -DQ expression. The aim was to investigate HLA-DRA1 tri-SNPs in relation to extended HLA class II haplotypes and human peripheral blood cell HLA-DQ cell-surface median fluorescence intensity (MFI), the first-appearing islet autoantibody, and autoimmunity burden. A total of 67 healthy subjects (10-15 y) at increased HLA risk for type 1 diabetes and with (n = 54) or without (n = 13) islet autoantibodies were followed longitudinally in the Diabetes Prediction in Skåne study. Among four tri-SNPs, AGG (n = 67), GCA (n = 47), ACG (n = 11), and ACA (n = 9), HLA-DQ cell-surface MFI on CD4+ T cells was lower in AGG than GCA (p = 0.030) subjects. Cumulative autoimmunity burden was associated with reduced HLA-DQ cell-surface MFI in AGG compared with GCA in CD16+ cells (p = 0.0013), CD4+ T cells (p = 0.0018), and CD8+ T cells (p = 0.016). The results suggest that HLA-DRA1 tri-SNPs may be related to HLA-DQ cell-surface expression and autoimmunity burden.


Assuntos
Diabetes Mellitus Tipo 1 , Cadeias HLA-DRB1 , Adolescente , Criança , Humanos , Autoanticorpos , Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1/genética , Haplótipos , Antígenos HLA-DQ/genética , Cadeias HLA-DRB1/genética , Íntrons , Polimorfismo de Nucleotídeo Único , Fatores de Risco
3.
J Transl Autoimmun ; 3: 100052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32743532

RESUMO

The risk for type 1 diabetes is strongly associated with HLA-DQ and the appearance of beta cell autoantibodies against either insulin, glutamate decarboxylase (GAD65), insulinoma-associated protein-2 (IA-2), or zinc transporter 8 (ZnT8). Prolonged exposure to autoantibodies may be related to T cell exhaustion known to occur in chronic infections or autoimmune disorders. It was hypothesized that autoantibody exposure may affect HLA-DQ expression on peripheral blood cells and thereby contribute to T cell exhaustion thought to be associated with the pathogenesis of type 1 diabetes. The aim of this study was to determine whether autoantibody exposure as an expression of autoimmunity burden was related to peripheral blood cell HLA-DQ cell surface expression in either 1) a cross-sectional analysis or 2) cumulative as area under the trajectory of autoantibodies during long term follow-up in the Diabetes Prediction in Skåne (DiPiS) study. Children (n = 67), aged 10-15 years were analyzed for complete blood count, HLA-DQ cell surface median fluorescence intensity (MFI), autoantibody frequency, and HLA genotypes by Next Generation Sequencing. Decreased HLA-DQ cell surface MFI with an increasing number of autoantibodies was observed in CD16+, CD14+CD16-, CD4+ and CD8+ cells but not in CD19+ cells and neutrophils. HLA-DQ cell surface MFI was associated with HLA-DQ2/8 in CD4+ T cells, marginally in CD14+CD16- monocytes and CD8+ T cells. These associations appeared to be related to autoimmunity burden. The results suggest that HLA-DQ cell surface expression was related to HLA and autoimmunity burden.

4.
Diabetes ; 68(7): 1523-1527, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30962219

RESUMO

Type 1 diabetes (T1D) involves the interaction of multiple gene variants, environmental factors, and immunoregulatory dysfunction. Major T1D genetic risk loci encode HLA-DR and -DQ. Genetic heterogeneity and linkage disequilibrium in the highly polymorphic HLA region confound attempts to identify additional T1D susceptibility loci. To minimize HLA heterogeneity, T1D patients (N = 365) and control subjects (N = 668) homozygous for the HLA-DR3 high-risk haplotype were selected from multiple large T1D studies and examined to identify new T1D susceptibility loci using molecular inversion probe sequencing technology. We report that risk for T1D in HLA-DR3 homozygotes is increased significantly by a previously unreported haplotype of three single nucleotide polymorphisms (SNPs) within the first intron of HLA-DRA1. The homozygous risk haplotype has an odds ratio of 4.65 relative to the protective homozygous haplotype in our sample. Individually, these SNPs reportedly function as "expression quantitative trait loci," modulating HLA-DR and -DQ expression. From our analysis of available data, we conclude that the tri-SNP haplotype within HLA-DRA1 may modulate class II expression, suggesting that increased T1D risk could be attributable to regulated expression of class II genes. These findings could help clarify the role of HLA in T1D susceptibility and improve diabetes risk assessment, particularly in high-risk HLA-DR3 homozygous individuals.


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Cadeias alfa de HLA-DR/genética , Antígeno HLA-DR3/genética , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Feminino , Frequência do Gene , Variação Genética , Genótipo , Homozigoto , Humanos , Íntrons , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA