Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 584(7820): 215-220, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788735

RESUMO

Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure1-5. An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers6. The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition7-9, resulting in a periodically modulated pseudo-magnetic field10-14, which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state15-17. This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands.

2.
Nature ; 573(7772): 91-95, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31365921

RESUMO

Bilayer graphene can be modified by rotating (twisting) one layer with respect to the other. The interlayer twist gives rise to a moiré superlattice that affects the electronic motion and alters the band structure1-4. Near a 'magic angle' of twist2,4, where the emergence of a flat band causes the charge carriers to slow down3, correlated electronic phases including Mott-like insulators and superconductors were recently discovered5-8 by using electronic transport. These measurements revealed an intriguing similarity between magic-angle twisted bilayer graphene and high-temperature superconductors, which spurred intensive research into the underlying physical mechanism9-14. Essential clues to this puzzle, such as the symmetry and spatial distribution of the spectral function, can be accessed through scanning tunnelling spectroscopy. Here we use scanning tunnelling microscopy and spectroscopy to visualize the local density of states and charge distribution in magic-angle twisted bilayer graphene. Doping the sample to partially fill the flat band, we observe a pseudogap phase accompanied by a global stripe charge order that breaks the rotational symmetry of the moiré superlattice. Both the pseudogap and the stripe charge order disappear when the band is either empty or full. The close resemblance to similar observations in high-temperature superconductors15-21 provides new evidence of a deeper link underlying the phenomenology of these systems.

3.
Nano Lett ; 23(1): 73-81, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576808

RESUMO

Artificially twisted heterostructures of semiconducting transition-metal dichalcogenides (TMDs) offer unprecedented control over their electronic and optical properties via the spatial modulation of interlayer interactions and structural reconstruction. Here we study twisted MoS2 bilayers in a wide range of twist angles near 0° using scanning tunneling microscopy/spectroscopy. We investigate the twist angle dependence of the moiré pattern, which is dominated by lattice reconstruction for small angles (<2°), leading to large triangular domains with rhombohedral stacking. Local spectroscopy measurements reveal a large moiré-potential strength of 100-200 meV for angles <3°. In reconstructed regions, we see a bias-dependent asymmetry between neighboring triangular domains, which we relate to the vertical polarization that is intrinsic to rhombohedral stacked TMDs. This viewpoint is further supported by spectroscopy maps and ambient piezoresponse measurements. Our results provide a microscopic perspective of this new class of interfacial ferroelectrics and can offer clues for designing novel heterostructures that harness this effect.

4.
Nano Lett ; 23(15): 7166-7173, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506183

RESUMO

A key aspect of how the brain learns and enables decision-making processes is through synaptic interactions. Electrical transmission and communication in a network of synapses are modulated by extracellular fields generated by ionic chemical gradients. Emulating such spatial interactions in synthetic networks can be of potential use for neuromorphic learning and the hardware implementation of artificial intelligence. Here, we demonstrate that in a network of hydrogen-doped perovskite nickelate devices, electric bias across a single junction can tune the coupling strength between the neighboring cells. Electrical transport measurements and spatially resolved diffraction and nanoprobe X-ray and scanning microwave impedance spectroscopic studies suggest that graded proton distribution in the inhomogeneous medium of hydrogen-doped nickelate film enables this behavior. We further demonstrate signal integration through the coupling of various junctions.

5.
Nat Mater ; 20(7): 1037, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34075204

RESUMO

A Correction to this paper has been published: https://doi.org/10.1038/s41563-021-00997-2.

6.
Nat Mater ; 20(4): 488-494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33589799

RESUMO

Magic-angle twisted bilayer graphene exhibits intriguing quantum phase transitions triggered by enhanced electron-electron interactions when its flat bands are partially filled. However, the phases themselves and their connection to the putative non-trivial topology of the flat bands are largely unexplored. Here we report transport measurements revealing a succession of doping-induced Lifshitz transitions that are accompanied by van Hove singularities, which facilitate the emergence of correlation-induced gaps and topologically non-trivial subbands. In the presence of a magnetic field, well-quantized Hall plateaus at a filling of 1,2,3 carriers per moiré cell reveal the subband topology and signal the emergence of Chern insulators with Chern numbers, C = 3,2,1, respectively. Surprisingly, for magnetic fields exceeding 5 T we observe a van Hove singularity at a filling of 3.5, suggesting the possibility of a fractional Chern insulator. This van Hove singularity is accompanied by a crossover from low-temperature metallic, to high-temperature insulating behaviour, characteristic of entropically driven Pomeranchuk-like transitions.

7.
Nano Lett ; 21(14): 6132-6138, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34231367

RESUMO

The nearly commensurate charge density wave (CDW) excitations native to the transition-metal dichalcogenide crystal, 1T-TaS2, under ambient conditions are revealed by scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of a graphene/TaS2 heterostructure. Surface potential measurements show that the graphene passivation layer prevents oxidation of the air-sensitive 1T-TaS2 surface. The graphene protective layer does not however interfere with probing the native electronic properties of 1T-TaS2 by STM/STS, which revealed that nearly commensurate CDW hosts an array of vortex-like topological defects. We find that these topological defects organize themselves to form a lattice with quasi-long-range order, analogous to the vortex Bragg glass in type-II superconductors but accessible in ambient conditions.

8.
Nat Mater ; 19(12): 1265-1275, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33208935

RESUMO

Near a magic twist angle, bilayer graphene transforms from a weakly correlated Fermi liquid to a strongly correlated two-dimensional electron system with properties that are extraordinarily sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation. Among other phenomena, magic-angle twisted bilayer graphene hosts superconductivity, interaction-induced insulating states, magnetism, electronic nematicity, linear-in-temperature low-temperature resistivity and quantized anomalous Hall states. We highlight some key research results in this field, point to important questions that remain open and comment on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world.

9.
Proc Natl Acad Sci U S A ; 113(24): 6623-8, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27302949

RESUMO

One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. Here we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles' lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together with direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. We further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.

10.
Proc Natl Acad Sci U S A ; 113(50): 14272-14276, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911824

RESUMO

Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene's extraordinary heat conduction, active cooling has not been considered feasible due to graphene's low thermoelectric power factor. Here, we show that the thermoelectric performance of graphene can be significantly improved by using hexagonal boron nitride (hBN) substrates instead of SiO2 We find the room temperature efficiency of active cooling in the device, as gauged by the power factor times temperature, reaches values as high as 10.35 W⋅m-1⋅K-1, corresponding to more than doubling the highest reported room temperature bulk power factors, 5 W⋅m-1⋅K-1, in YbAl3, and quadrupling the best 2D power factor, 2.5 W⋅m-1⋅K-1, in MoS2 We further show that the Seebeck coefficient provides a direct measure of substrate-induced random potential fluctuations and that their significant reduction for hBN substrates enables fast gate-controlled switching of the Seebeck coefficient polarity for applications in integrated active cooling devices.

11.
Nano Lett ; 17(5): 2839-2843, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28409936

RESUMO

Graphene's remarkable properties are inherent to its two-dimensional honeycomb lattice structure. Its low dimensionality, which makes it possible to rearrange the atoms by applying an external force, offers the intriguing prospect of mechanically controlling the electronic properties. In the presence of strain, graphene develops a pseudomagnetic field (PMF) that reconstructs the band structure into pseudo Landau levels (PLLs). However, a feasible route to realizing, characterizing and controlling PMFs is still lacking. Here we report on a method to generate and characterize PMFs in a graphene membrane supported on nanopillars. A direct measure of the local strain is achieved by using the magnifying effect of the moiré pattern formed against a hexagonal boron nitride substrate under scanning tunneling microscopy. We quantify the strain-induced PMF through the PLLs spectra observed in scanning tunneling spectroscopy. This work provides a pathway to strain induced engineering and electro-mechanical graphene-based devices.

12.
Nat Mater ; 20(4): 571, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33402703
13.
Nature ; 462(7270): 192-5, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19829294

RESUMO

In graphene, which is an atomic layer of crystalline carbon, two of the distinguishing properties of the material are the charge carriers' two-dimensional and relativistic character. The first experimental evidence of the two-dimensional nature of graphene came from the observation of a sequence of plateaus in measurements of its transport properties in the presence of an applied magnetic field. These are signatures of the so-called integer quantum Hall effect. However, as a consequence of the relativistic character of the charge carriers, the integer quantum Hall effect observed in graphene is qualitatively different from its semiconductor analogue. As a third distinguishing feature of graphene, it has been conjectured that interactions and correlations should be important in this material, but surprisingly, evidence of collective behaviour in graphene is lacking. In particular, the quintessential collective quantum behaviour in two dimensions, the fractional quantum Hall effect (FQHE), has so far resisted observation in graphene despite intense efforts and theoretical predictions of its existence. Here we report the observation of the FQHE in graphene. Our observations are made possible by using suspended graphene devices probed by two-terminal charge transport measurements. This allows us to isolate the sample from substrate-induced perturbations that usually obscure the effects of interactions in this system and to avoid effects of finite geometry. At low carrier density, we find a field-induced transition to an insulator that competes with the FQHE, allowing its observation only in the highest quality samples. We believe that these results will open the door to the physics of FQHE and other collective behaviour in graphene.

14.
Nano Lett ; 14(8): 4628-33, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25004377

RESUMO

The discovery of graphene has put the spotlight on other layered materials including transition metal dichalcogenites (TMD) as building blocks for novel heterostructures assembled from stacked atomic layers. Molybdenum disulfide, MoS2, a semiconductor in the TMD family, with its remarkable thermal and chemical stability and high mobility, has emerged as a promising candidate for postsilicon applications such as switching, photonics, and flexible electronics. Because these rely on controlling the position of the Fermi energy (EF), it is crucial to understand its dependence on doping and gating. To elucidate these questions we carried out gated scanning tunneling microscopy (STM) and spectroscopy (STS) measurements and compared them with transport measurements in a field effect transistor (FET) device configuration. This made it possible to measure the bandgap and the position of EF in MoS2 and to track its evolution with gate voltage. For bulk samples, the measured bandgap (∼ 1.3 eV) is comparable to the value obtained by photoluminescence, and the position of EF (∼ 0.35 eV) below the conduction band, is consistent with N-doping reported in this material. We show that the N-doping in bulk samples can be attributed to S vacancies. In contrast, the significantly higher N-doping observed in thin MoS2 films deposited on SiO2 is dominated by charge traps at the sample-substrate interface.

15.
Phys Rev Lett ; 113(15): 156804, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375733

RESUMO

One of the enduring challenges in graphene research and applications is the extreme sensitivity of its charge carriers to external perturbations, especially those introduced by the substrate. The best available substrates to date, graphite and hexagonal boron nitride (h-BN), still pose limitations: graphite being metallic does not allow gating, while both h-BN and graphite, having lattice structures closely matched to that of graphene, may cause significant band structure reconstruction. Here we show that the atomically smooth surface of exfoliated MoS(2) provides access to the intrinsic electronic structure of graphene without these drawbacks. Using scanning tunneling microscopy and Landau-level (LL) spectroscopy in a device configuration that allows tuning of the carrier concentration, we find that graphene on MoS(2) is ultraflat, producing long mean free paths, while avoiding band structure reconstruction. Importantly, the screening of the MoS(2) substrate can be tuned by changing the position of the Fermi energy with relatively low gate voltages. We show that shifting the Fermi energy from the gap to the edge of the conduction band gives rise to enhanced screening and to a substantial increase in the mean free path and quasiparticle lifetime. MoS(2) substrates thus provide unique opportunities to access the intrinsic electronic properties of graphene and to study in situ the effects of screening on electron-electron interactions and transport.

16.
Phys Rev Lett ; 112(3): 036804, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24484160

RESUMO

We report the observation of an isolated charged impurity in graphene and present direct evidence of the close connection between the screening properties of a 2D electron system and the influence of the impurity on its electronic environment. Using scanning tunneling microscopy and Landau level spectroscopy, we demonstrate that in the presence of a magnetic field the strength of the impurity can be tuned by controlling the occupation of Landau-level states with a gate voltage. At low occupation the impurity is screened, becoming essentially invisible. Screening diminishes as states are filled until, for fully occupied Landau levels, the unscreened impurity significantly perturbs the spectrum in its vicinity. In this regime we report the first observation of Landau-level splitting into discrete states due to lifting the orbital degeneracy.

18.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958515

RESUMO

To meet changing research demands, new scanning tunneling microscope (STM) features must constantly evolve. We describe the design, development, and performance of a modular plug-in STM, which is compact and stable. The STM head is equipped with a quick-connect socket that is matched to a universal connector plug, enabling it to be transferred between systems. This head can be introduced into a vacuum system via a load-lock and transferred to various sites equipped with the connector plug, permitting multi-site STM operation. Its design allows for reliable operation in a variety of experimental conditions, including a broad temperature range, ultra-high vacuum, high magnetic fields, and closed-cycle pulse-tube cooling. The STM's compact size is achieved by a novel nested piezoelectric coarse walker design, which allows for large orthogonal travel in the X, Y, and Z directions, ideal for studying both bulk and thin film samples ranging in size from mm to µm. Its stability and noise tolerance are demonstrated by achieving atomic resolution under ambient conditions on a laboratory desktop with no vibrational or acoustic isolation. The operation of the nested coarse walkers is demonstrated by successful navigation to a µm-sized 2D sample.

19.
Rep Prog Phys ; 75(5): 056501, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22790587

RESUMO

This review covers recent experimental progress in probing the electronic properties of graphene and how they are influenced by various substrates, by the presence of a magnetic field and by the proximity to a superconductor. The focus is on results obtained using scanning tunneling microscopy, spectroscopy, transport and magnetotransport techniques.


Assuntos
Grafite/química , Teste de Materiais/métodos , Microscopia de Tunelamento/métodos , Análise Espectral/métodos , Condutividade Elétrica , Transporte de Elétrons , Campos Magnéticos
20.
Adv Mater ; 34(43): e2205055, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36026556

RESUMO

The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead-halide perovskite field-effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor-phase epitaxy technique that results in large-area single-crystalline cesium lead bromide (CsPbBr3 ) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin-film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap-free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall-effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2 V-1 s-1 at room temperature to ≈250 cm2 V-1 s-1 at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon-limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high-performance perovskite electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA