Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(2): 601-610, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36289300

RESUMO

The impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population. Forty-five adults were randomized into either a psychobiotic (n = 24) or control (n = 21) diet for 4 weeks. Fecal microbiota composition and function was characterized using shotgun sequencing. Stress, overall health and diet were assessed using validated questionnaires. Metabolic profiling of plasma, urine and fecal samples was performed. Intervention with a psychobiotic diet resulted in reductions of perceived stress (32% in diet vs. 17% in control group), but not between groups. Similarly, biological marker of stress were not affected. Additionally, higher adherence to the diet resulted in stronger decreases in perceived stress. While the dietary intervention elicited only subtle changes in microbial composition and function, significant changes in the level of 40 specific fecal lipids and urinary tryptophan metabolites were observed. Lastly, microbial volatility was linked to greater changes in perceived stress scores in those on the psychobiotic diet. These results highlight that dietary approaches can be used to reduce perceived stress in a human cohort. Using microbiota-targeted diets to positively modulate gut-brain communication holds possibilities for the reduction of stress and stress-associated disorders, but additional research is warranted to investigate underlying mechanisms, including the role of the microbiota.


Assuntos
Dieta , Microbiota , Humanos , Adulto , Fezes , Estresse Psicológico/psicologia
2.
J Proteome Res ; 21(5): 1262-1275, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35380444

RESUMO

The modulation of host and dietary metabolites by gut microbiota (GM) is important for maintaining correct host physiology and in the onset of various pathologies. An ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the targeted quantitation in human plasma, serum, and urine of 89 metabolites resulting from human-GM cometabolism of dietary essential amino acids tryptophan, tyrosine, and phenylalanine as well as branched-chain amino acids. Ninety-six-well plate hybrid-SPE enables fast clean-up of plasma and serum. Urine was diluted and filtered. A 15 min cycle enabled the acquisition of 96 samples per day, with most of the metabolites stable in aqueous solution for up to 72 h. Calibration curves were specifically optimized to cover expected concentrations in biological fluids, and limits of detection were at the order of ppb. Matrix effects were in acceptable ranges, and analytical recoveries were in general greater than 80%. Inter and intraday precision and accuracy were satisfactory. We demonstrated its application in plasma and urine samples obtained from the same individual in the frame of an interventional study, allowing the quantitation of 51 metabolites. The method could be considered the reference for deciphering changes in human-gut microbial cometabolism in health and disease. Data are available via Metabolights with the identifier MTBLS4399.


Assuntos
Espectrometria de Massas em Tandem , Triptofano , Aminoácidos de Cadeia Ramificada , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Fenilalanina , Espectrometria de Massas em Tandem/métodos , Tirosina , Fluxo de Trabalho
3.
Int J Obes (Lond) ; 46(4): 885-888, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35001078

RESUMO

Converging data support the role of chronic low-grade inflammation in depressive symptomatology in obesity. One mechanism likely to be involved relies on the effects of inflammation on tryptophan (TRP) metabolism. While recent data document alterations in the indole pathway of TRP metabolism in obesity, the relevance of this mechanism to obesity-related depressive symptoms has not been investigated. The aim of this preliminary study was to assess the association between plasma levels of TRP and indole metabolites and depressive symptoms in 44 subjects with severe or morbid obesity, free of clinically relevant neuropsychiatric disorders. The interaction effect of inflammation, reflected in serum high-sensitive C-reactive protein (hsCRP) levels, and indoles on depressive symptoms was also determined. Higher serum levels of hsCRP and lower concentrations of TRP and indoles, particularly indole-3-carboxaldehyde (IAld), correlated with more severe depressive symptoms. Interestingly, the effect of high hsCRP levels in predicting greater depressive symptoms was potentiated by low IAld levels. These results comfort the link between inflammation, the indole pathway of TRP metabolism, and obesity-related depressive symptoms.


Assuntos
Cinurenina , Triptofano , Proteína C-Reativa/metabolismo , Depressão/metabolismo , Humanos , Indóis , Inflamação/metabolismo , Cinurenina/metabolismo , Obesidade/complicações , Triptofano/metabolismo
4.
FASEB J ; 35(5): e21494, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33856696

RESUMO

Monocyte recruitment after vascular injury and their migration through the vessel wall represent crucial events in the initiation, progression, and destabilization of atherosclerotic plaque. Circulating monocytes are exposed to stimuli that alter their physiological state, and among them, lipids play a key role. Several studies investigated the mechanisms by which lipids affect monocyte functions promoting coronary atherosclerotic plaque initiation, but information on the relationship between lipid composition and function of monocyte is scant. We aimed at studying the migration of circulating monocytes isolated from patients with acute myocardial infarction (AMI) at hospital presentation and investigating its correlation with cellular lipid profile. The migration of monocytes was tested using both fetal bovine serum (FBS) and autologous serum as chemoattractant stimuli. Monocyte lipid profile was evaluated through an untargeted lipidomics approach, using a liquid chromatography/time-of-flight mass spectrometry platform. We observed that AMI patients' monocytes showed a significant increase in FBS and autologous serum-mediated migration compared to controls. Moreover, a different monocyte lipidomic profile between the two study groups was detected. In particular, AMI patients' monocytes showed an altered composition in ceramides, with an increase in lactosylceramide and in phospholipids (ie, phosphatidylethanolamine and lisophosphatidylethanolamine). Of note, a positive correlation between lactosylceramide levels and monocyte migration was observed. Furthermore, the lactosylceramide synthase inhibition significantly reduced FBS-induced monocyte migration. Our results highlight the influence of lactosylceramide on the monocyte migration capacity, pointing out a new possible mechanism of lipids in the onset of atherothrombosis and, hence, in AMI.


Assuntos
Movimento Celular , Lactosilceramidas/metabolismo , Lipidômica/métodos , Lipídeos/análise , Monócitos/metabolismo , Infarto do Miocárdio/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(43): 21780-21788, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591215

RESUMO

Bacterial outer membrane vesicles (OMVs) represent an interesting vaccine platform for their built-in adjuvanticity and simplicity of production process. Moreover, OMVs can be decorated with foreign antigens using different synthetic biology approaches. However, the optimal OMV engineering strategy, which should guarantee the OMV compartmentalization of most heterologous antigens in quantities high enough to elicit protective immune responses, remains to be validated. In this work we exploited the lipoprotein transport pathway to engineer OMVs with foreign proteins. Using 5 Staphylococcus aureus protective antigens expressed in Escherichia coli as fusions to a lipoprotein leader sequence, we demonstrated that all 5 antigens accumulated in the vesicular compartment at a concentration ranging from 5 to 20% of total OMV proteins, suggesting that antigen lipidation could be a universal approach for OMV manipulation. Engineered OMVs elicited high, saturating antigen-specific antibody titers when administered to mice in quantities as low as 0.2 µg/dose. Moreover, the expression of lipidated antigens in E. coli BL21(DE3)ΔompAΔmsbBΔpagP was shown to affect the lipopolysaccharide structure, with the result that the TLR4 agonist activity of OMVs was markedly reduced. These results, together with the potent protective activity of engineered OMVs observed in mice challenged with S. aureus Newman strain, makes the 5-combo-OMVs a promising vaccine candidate to be tested in clinics.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Vesículas Extracelulares/imunologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/imunologia , Animais , Membrana Externa Bacteriana/imunologia , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Lipopolissacarídeos/imunologia , Camundongos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia
6.
Nutr Metab Cardiovasc Dis ; 30(12): 2286-2295, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32912785

RESUMO

BACKGROUND & AIMS: Patients with cystathionine ß-synthase deficiency (CBSD) exhibit high circulating levels of homocysteine and enhanced lipid peroxidation. We have characterized the plasma lipidome in CBSD patients and related lipid abnormalities with reactions underlying enhanced homocysteine levels. METHODS AND RESULTS: Using an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, plasma lipids were determined with an untargeted lipidomics approach in 11 CBSD patients and 11 matched healthy subjects (CTRL). Compared to CTRL, CBSD patients had a higher medium and long-chain polyunsaturated fatty acids (PUFA) content in phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) species (p < 0.02), and depletion of phosphatidylcholine (PC; p = 0.02) and of lysophosphatidylcholine (LPC; p = 0.003) species containing docosahexaenoic acid (DHA), suggesting impaired phosphatidylethanolamine-N-methyltransferase (PEMT) activity. PEMT converts PE into PC using methyl group by S-adenosylmethionine (SAM) thus converted in S-adenosylhomocysteine (SAH). Whole blood SAM and SAH concentrations by liquid chromatography tandem mass spectrometry were 1.4-fold (p = 0.015) and 5.3-fold (p = 0.003) higher in CBSD patients than in CTRL. A positive correlation between SAM/SAH and PC/PE ratios (r = 0.520; p = 0.019) was found. CONCLUSIONS: A novel biochemical abnormality in CBSD patients consisting in depletion of PC and LPC species containing DHA and accumulation of PUFA in PE and LPE species is revealed by this lipidomic approach. Changes in plasma SAM and SAH concentrations are associated with such phospholipid dysregulation. Given the key role of DHA in thrombosis prevention, depletion of PC species containing DHA in CBSD patients provides a new direction to understand the poor cardiovascular outcome of patients with homocystinuria.


Assuntos
Dislipidemias/sangue , Homocistinúria/complicações , Fosfolipídeos/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Dislipidemias/diagnóstico , Dislipidemias/etiologia , Feminino , Homocistinúria/sangue , Homocistinúria/diagnóstico , Humanos , Lipidômica , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray
7.
Plant Physiol ; 172(3): 1821-1843, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27670818

RESUMO

The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Dessecação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Metaboloma/genética , Metabolômica , Análise de Componente Principal , Propanóis/metabolismo , Estilbenos/metabolismo , Transcriptoma/genética
8.
Rapid Commun Mass Spectrom ; 31(3): 292-300, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27935129

RESUMO

RATIONALE: Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are both used to generate ions for the analysis of metabolites by liquid chromatography/mass spectrometry (LC/MS). We compared the performance of these methods for the analysis of Corvina grapevine berry methanolic extracts, which are complex mixtures of diverse metabolites. METHODS: Corvina berries representing three ripening stages (veraison, early-ripening and full-ripening) were collected during two growing seasons, powdered and extracted with methanol. Untargeted metabolomic analysis was carried out by LC/ESI-MS and LC/APCI-MS. Processed data files were assembled into a data matrix for multivariate statistical analysis. The limits of detection (LODs), limits of quantification (LOQs), linear ranges, and matrix effects were investigated for strongly polar metabolites such as sucrose and tartaric acid and for moderately polar metabolites such as caftaric acid, epicatechin and quercetin 3-O-glucoside. RESULTS: Multivariate statistical analysis of the 608 features revealed that APCI was particularly suitable for the ionization of strongly polar metabolites such as sugars and organic acids, whereas ESI was more suitable for moderately polar metabolites such as flavanols, flavones and both glycosylated and acylated anthocyanins. APCI generated more fragment ions whereas ESI generated more adducts. ESI achieved lower LODs and LOQs for sucrose and tartaric acid but featured narrower linear ranges and greater matrix effects. CONCLUSIONS: ESI and APCI are not complementary ion sources. Indeed, ESI can be exploited to analyze moderately polar metabolites, whereas APCI can be used to investigate weakly polar/non-polar metabolites and, as demonstrated by our results, also strongly polar metabolites. ESI and APCI can be used in parallel, exploiting their strengths to cover the plant metabolome more broadly than either method alone. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida/métodos , Frutas/química , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Vitis/química , Flavonoides/análise , Frutas/metabolismo , Limite de Detecção , Modelos Lineares , Metaboloma , Análise Multivariada , Análise de Componente Principal , Reprodutibilidade dos Testes , Açúcares/análise , Vitis/metabolismo
9.
Anal Bioanal Chem ; 409(24): 5661-5666, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730308

RESUMO

Direct coupling of thin-layer chromatography (TLC) with matrix-assisted laser desorption ionization (MALDI) mass spectrometry allows fast and detailed characterization of a large variety of analytes. The use of this technique, however, presents great challenges in semiquantitative applications because of the complex phenomena occurring at the TLC surface. In our laboratory, we recently observed that the ion intensities of several alkali adduct ions were significantly different between the top and interior layer of the TLC plate. This indicates that the integrity of the TLC surface can have an important effect on the reproducibility of TLC- MALDI analyses. Graphical Abstract MALDI imaging reveals that surface integrity affects the detection of alkali adductions in TLC-MALDI.

10.
Anal Bioanal Chem ; 409(26): 6253-6261, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815273

RESUMO

The integration of molecularly imprinted polymers (MIPs) with MALDI-TOF mass spectrometry (MS) combines MIP selectivity with MS sensitivity. Whether the size of the MIP material-micro versus nano-has an effect on the MS analysis was the object of the study. MIPs, targeting respectively the epitope peptide NR11 of cardiac troponin I and the peptide CK13 of human serum transferrin, were synthesized and characterized. The size-related performance of the MIP materials hyphenated with MALDI-TOF-MS analysis was studied by the incubation of the target peptide with the respective micro- or nano-MIP, followed by rinsing to remove non-specific deposition of the MIP to the MALDI target plate, co-crystallization with the organic matrix, and mass analysis. The quality of the MS analysis was assessed comparing the S/N of the mass peaks of the MIP-bound peptide to that of the same quantity of free peptide. Sweet spots and lower S/N (~ 1 order of magnitude) were observed for micro-MIP materials, while in the case of nano-MIP-bound peptide, the S/N was comparable to that of the free peptide, indicating higher compatibility of the nano-MIPs to MALDI-TOF-MS. The nano-MIP/MALDI-TOF-MS permitted the selective determination of the target peptide in real serum samples. Graphical abstract ᅟ.


Assuntos
Impressão Molecular/métodos , Peptídeos/sangue , Polímeros/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cristalização , Humanos , Nanoestruturas/química , Peptídeos/análise , Peptídeos/isolamento & purificação , Extração em Fase Sólida/métodos
11.
Zoolog Sci ; 34(1): 42-51, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28148211

RESUMO

Pseudokeronopsis erythrina produces three new secondary metabolites, erythrolactones A2, B2 and C2, and their respective sulfate esters (A1, B1, C1), the structures of which have been recently elucidated on the basis of NMR spectroscopic data coupled to high resolution mass measurements (HR-MALDI-TOF). An analysis of the discharge of the protozoan pigment granules revealed that the non-sulfonated erythrolactones are exclusively stored in these cortical organelles, which are commonly used by a number of ciliates as chemical weapons in offense/defense interactions with prey and predators. We evaluated the toxic activity of pigment granule discharge on a panel of free-living ciliates and micro-invertebrates, and the activity of each single purified erythrolactone on three ciliate species. We also observed predator-prey interactions of P. erythrina with unicellular and multicellular predators. Experimental results confirm that only P. erythrina cells with discharged pigment granules were preferentially or exclusively hunted and eaten by at least some of its predators, whereas almost all intact (fully pigmented) cells remained alive. Our results indicate that erythrolactones are very effective as a chemical defense in P. erythrina.


Assuntos
Cilióforos/metabolismo , Lactonas/química , Lactonas/toxicidade , Animais , Cilióforos/genética , Invertebrados , Lactonas/metabolismo , Estrutura Molecular , Filogenia , Comportamento Predatório
12.
Chem Biodivers ; 14(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27981801

RESUMO

A chemotaxonomic study on the marine brown alga Cystoseira schiffneri collected from the Tunisian marine coast allowed us to identify kjellmanianone (1) and a new isololiolide derivative named schiffnerilolide (2). The structure elucidation and the assignment of relative configurations of the isolated natural products were based on advanced mass spectrometric and nuclear magnetic resonance techniques. This outcome suggested a close phylogenetic relationship of C. schiffneri with brown algae belonging to genus Sargassum C. Agardh. Molecular characterization using the nuclear small subunit rRNA (SSU rRNA) gene (18S) sequence as genetic marker was made. Pigment analysis showed a significant seasonal change of carotenoids, in particular of fucoxanthin and fucoxanthinol. Also galactolipids, the main constituents of the thylakoid membranes, showed remarkable seasonal changes.


Assuntos
Phaeophyceae/química , Phaeophyceae/classificação , Carotenoides/metabolismo , Classificação , Galactolipídeos/metabolismo , Isomerismo , Estrutura Molecular , Filogenia , Estações do Ano , Tunísia
13.
J Mol Recognit ; 29(1): 41-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26373625

RESUMO

Molecularly imprinted polymers (MIPs) were combined to MALDI-TOF-MS to evaluate a selective enrichment (SE) method for the determination of clinically relevant biomarkers from complex biological samples. The concept was proven with the myocardial injury marker Troponin I (cTnI). In a first part, MIP materials entailed for the recognition of cTnI epitopes (three peptides selected) were prepared and characterized in dimensions (0.7-2µm), dissociation constants (58-817 nM), kinetics of binding (5-60 min), binding capacity (ca. 1.5 µg/mg polymer), imprinting factors (3 > IF > 5) and selectivity for the peptide epitope. Then, the MIPs, incubated with cTnI peptides and spotted on the target with the DHB matrix, were assayed for the desorption of the peptides in MALDI-TOF-MS. The measured detection limit was ca. 300 femtomols. Finally, the MIP-SE MALDI-TOF-MS was tested for its ability to enrich in the cTnI peptides from a complex sample, mimic of serum (i.e. 81 peptides of digested albumin). The MIP-SE MALDI-TOF-MS successfully enriched in cTnI peptides from the complex sample proving the technique could offer a flexible platform to prepare entailed materials suitable for diagnostic purposes.


Assuntos
Polímeros/química , Troponina I/análise , Humanos , Limite de Detecção , Impressão Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
BMC Plant Biol ; 15: 191, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26245744

RESUMO

BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.


Assuntos
Interação Gene-Ambiente , Metaboloma , Proteínas de Plantas/genética , Vitis/genética , Frutas/genética , Frutas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análise de Sequência de Proteína , Vitis/metabolismo
15.
J Membr Biol ; 247(6): 469-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24658890

RESUMO

Supercritical carbon dioxide (SC-CO2) treatment is one of the most promising alternative techniques for pasteurization of both liquid and solid food products. The inhibitory effect of SC-CO2 on bacterial growth has been investigated in different species, but the precise mechanism of action remains unknown. Membrane permeabilization has been proposed to be the first event in SC-CO2-mediated inactivation. Flow cytometry, high performance liquid chromatography­electrospray ionization­mass spectrometry and NMR analyses were performed to investigate the effect of SC-CO2 treatment on membrane lipid profile and membrane permeability in Escherichia coli K12. After 15 min of SC-CO2 treatment at 120 bar and 35 °C, the majority of bacterial cells dissipated their membrane potential (95 %) and lost membrane integrity, as 81 % become partially permeabilized and 18 % fully permeabilized. Membrane permeabilization was associated with a 20 % decrease in bacterial biovolume and to a strong (>50 %) reduction in phosphatidylglycerol (PG) membrane lipids, without altering the fatty acid composition and the degree of unsaturation of acyl chains. PGs are thought to play an important role in membrane stability, by reducing motion of phosphatidylethanolamine (PE) along the membrane bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. In addition, the decrease in intracellular pH induced by SC-CO2 likely alters the chemical properties of phospholipids and the PE/PG ratio. Biophysical effects of SC-CO2 thus cause a strong perturbation of membrane architecture in E. coli, and such alterations are likely associated with its strong inactivation effect.


Assuntos
Dióxido de Carbono/farmacologia , Membrana Celular/metabolismo , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Membrana Celular/efeitos dos fármacos
16.
J Eukaryot Microbiol ; 61(3): 293-304, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24512001

RESUMO

Coleps hirtus is a small common freshwater ciliate belonging to the protostomatid group, its body covered by calcified plates assembled to form an armor. Coleps feeds on bacteria, algae, flagellates, living and dead ciliates, animal and plant tissues. To assist its carnivorous feeding the ciliate is equipped with offensive extrusomes (toxicysts), clustering mainly in and around its oral aperture. In this study, we isolated the discharge of the toxicysts from living cells, evaluating its cytotoxic effects against various ciliate species, and demonstrating that it is essential for the effectiveness of Coleps' predatory behavior. The analysis of the toxicyst discharge performed by liquid chromatography-electrospray-mass spectrometry and gas chromatography-mass spectrometry, revealed the presence of a mixture of 19 saturated, monounsaturated and polyunsaturated free fatty acids with the addition of a minor amount of a diterpenoid (phytanic acid).


Assuntos
Cilióforos/fisiologia , Citotoxinas/química , Citotoxinas/isolamento & purificação , Ácidos Graxos/análise , Ácido Fitânico/análise , Cromatografia Líquida , Cilióforos/química , Cilióforos/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Comportamento Alimentar , Água Doce/parasitologia , Genes de RNAr , Microscopia , Dados de Sequência Molecular , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray
17.
Foods ; 13(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39335868

RESUMO

This study aimed to provide novel information on the impact of indigenous non-Saccharomyces yeasts, including Metschnikowia chrysoperlae, Metschnikowia sinensis/shanxiensis, Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum, Hanseniaspora guilliermondii, and Pichia kluyveri, on metabolites related to the metabolism of tryptophan, phenylalanine, and tyrosine. The experiment included two fermentation practices: monoculture and sequential fermentation with commercial Saccharomyces cerevisiae, using sterile Marastina grape juice. A targeted approach through ultrahigh-resolution liquid chromatography associated with mass spectrometry was used to quantify 38 metabolites. All the indigenous yeasts demonstrated better consumption of tryptophan in monoculture than in interaction with S. cerevisiae. M. sinensis/shanxiensis was the only producer of indole-3-carboxylic acid, while its ethyl ester was detected in monoculture fermentation with H. guilliermondii. H. guilliermondii consumed the most phenylalanine among the other isolates. 5-hydroxy-L-tryptophan was detected in fermentations with M. pulcherrima and M. sinensis/shanxiensis. M. pulcherrima significantly increased tryptophol content and utilised tyrosine in monoculture fermentations. Sequential fermentation with M. sinensis/shanxiensis and S. cerevisiae produced higher amounts of N-acetyl derivatives of tryptophan and phenylalanine, while H. guilliermondii-S. cerevisiae fermentation resulted in wines with the highest concentrations of L-kynurenine and 3-hydroxyanthranilic acid. P. kluyveri produced the highest concentration of N-acetyl-L-tyrosine in monoculture fermentations. These findings highlight the different yeast metabolic pathways.

18.
Biomed Pharmacother ; 157: 114044, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463829

RESUMO

One of the organ-specific functions of the liver is the excretion of bilirubin into the bile. Membrane transport of bilirubin from the blood to the liver is not only an orphan function, because there is no link to the protein/gene units that perform this function, but also a poorly characterised function. The aim of this study was to investigate the pharmacology of bilirubin uptake in the liver of the female Wistar rat to improve basic knowledge in this neglected area of liver physiology. We treated isolated perfused livers of female rats with repeated single-pass, albumin-free bilirubin boli. We monitored both bilirubin and bilirubin glucuronide in perfusion effluent with a bio-fluorometric assay. We tested the ability of nine molecules known as substrates or inhibitors of sinusoidal membrane transporters to inhibit hepatic uptake of bilirubin. We found that cyanidin 3-glucoside and malvidin 3-glucoside were the only molecules that inhibited bilirubin uptake. These dietary anthocyanins resemble bromosulfophthalein (BSP), a substrate of several sinusoidal membrane transporters. The SLCO-specific substrates estradiol-17 beta-glucuronide, pravastatin, and taurocholate inhibited only bilirubin glucuronide uptake. Cyanidin 3-glucoside and taurocholate acted at physiological concentrations. The SLC22-specific substrates indomethacin and ketoprofen were inactive. We demonstrated the existence of a bilirubin-glucuronide transporter inhibited by bilirubin, a fact reported only once in the literature. The data suggest that bilirubin and bilirubin glucuronide are transported to the liver via pharmacologically distinct membrane transport pathways. Some dietary anthocyanins may physiologically modulate the uptake of bilirubin into the liver.


Assuntos
Antocianinas , Fígado , Ratos , Animais , Feminino , Antocianinas/farmacologia , Ratos Wistar , Fígado/metabolismo , Ácido Taurocólico , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Glucosídeos/farmacologia , Glucosídeos/metabolismo
19.
Mol Neurobiol ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37605096

RESUMO

The gut microbiome may be involved in the occurrence of dementia primarily through the molecular mechanisms of producing bioactive molecules and promoting inflammation. Epidemiological evidence linking gut microbiome molecules and inflammatory markers to dementia risk has been mixed, and the intricate interplay between these groups of biomarkers suggests that their joint investigation in the context of dementia is warranted. We aimed to simultaneously investigate the association of circulating levels of selected gut microbiome molecules and inflammatory markers with dementia risk. This case-cohort epidemiological study included 805 individuals (83 years, 66% women) free of dementia at baseline. Plasma levels of 19 selected gut microbiome molecules comprising lipopolysaccharide, short-chain fatty acids, and indole-containing tryptophan metabolites as well as four inflammatory markers measured at baseline were linked to incident all-cause (ACD) and Alzheimer's disease dementia (AD) in binary outcomes and time-to-dementia analyses. Independent of several covariates, seven gut microbiome molecules, 5-hydroxyindole-3-acetic acid, indole-3-butyric acid, indole-3-acryloylglycine, indole-3-lactic acid, indole-3-acetic acid methyl ester, isobutyric acid, and 2-methylbutyric acid, but no inflammatory markers discriminated incident dementia cases from non-cases. Furthermore, 5-hydroxyindole-3-acetic acid (hazard ratio: 0.58; 0.36-0.94, P = 0.025) was associated with time-to-ACD. These molecules underpin gut microbiome-host interactions in the development of dementia and they may be crucial in its prevention and intervention strategies. Future larger epidemiological studies are needed to confirm our findings, specifically in exploring the repeatedly measured circulating levels of these molecules and investigating their causal relationship with dementia risk.

20.
J Clin Endocrinol Metab ; 107(7): e2896-e2905, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35325166

RESUMO

CONTEXT: Visceral (VAT) and subcutaneous adipose tissue (SAT) function as endocrine organs capable of influencing metabolic health across adiposity levels. OBJECTIVE: We aimed to investigate whether metabolites associated with VAT and SAT impact metabolic health through metabolite concentrations. METHODS: Analyses are based on 1790 participants from the population-based Rhineland Study. We assessed plasma levels of methionine (Met), branched-chain amino acids (BCAA), aromatic amino acids (AAA), and their metabolic downstream metabolites with liquid chromatography-mass spectrometry. VAT and SAT volumes were assessed by magnetic resonance imaging (MRI). Metabolically healthy and unhealthy phenotypes were defined using Wildman criteria. RESULTS: Metabolically unhealthy participants had higher concentrations of BCAA than metabolically healthy participants (P < 0.001). In metabolically unhealthy participants, VAT volumes were significantly associated with levels of L-isoleucine, L-leucine, indole-3-lactic acid, and indole-3-propionic acid (in log SD units: ß = 0.16, P = 0.003; ß = 0.12, P = 0.038; ß = 0.11, P = 0.035 and ß = -0.16, P = 0.010, respectively). Higher concentrations of certain BCAA and AAA-downstream metabolites significantly increased the odds of cardiometabolic risk markers. The relation between VAT volume and cardiometabolic risk markers was mediated by BCAA (indirect effects 3.7%-11%, P = 0.02 to < 0.0001), while the effect of VAT on systemic inflammation was mediated through higher kynurenine concentrations (indirect effect 6.4%, P < 0.0001). CONCLUSION: Larger volumes of VAT in metabolically unhealthy individuals are associated with altered concentrations of circulating BCAA and AAA-downstream metabolites, increasing the odds of cardiometabolic risk markers. This suggests that these metabolites are involved in the mechanisms that underlie the relationship of abdominal VAT with metabolic health.


Assuntos
Doenças Cardiovasculares , Gordura Intra-Abdominal , Tecido Adiposo/metabolismo , Adiposidade , Aminoácidos Aromáticos/metabolismo , Aminoácidos de Cadeia Ramificada , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Humanos , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA