Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiothorac Vasc Anesth ; 38(2): 526-533, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37838509

RESUMO

OBJECTIVE: Postoperative delirium (POD) can occur in up to 50% of older patients undergoing cardiovascular surgery, resulting in hospitalization and significant morbidity and mortality. This study aimed to determine whether intraoperative neurophysiologic monitoring (IONM) modalities can be used to predict delirium in patients undergoing cardiovascular surgery. DESIGN: Adult patients undergoing cardiovascular surgery with IONM between 2019 and 2021 were reviewed retrospectively. Delirium was assessed multiple times using the Intensive Care Delirium Screening Checklist (ICDSC). Patients with an ICDSC score ≥4 were considered to have POD. Significant IONM changes were evaluated based on a visual review of electroencephalography (EEG) and somatosensory evoked potentials data and documentation of significant changes during surgery. SETTING: University of Pittsburgh Medical Center hospitals. PARTICIPANTS: Patients 18 years old and older undergoing cardiovascular surgery with IONM monitoring. MEASUREMENTS AND MAIN RESULTS: Of the 578 patients undergoing cardiovascular surgery with IONM, 126 had POD (21.8%). Significant IONM changes were noted in 134 patients, of whom 49 patients had delirium (36.6%). In contrast, 444 patients had no IONM changes during surgery, of whom 77 (17.3%) patients had POD. Upon multivariate analysis, IONM changes were associated with POD (odds ratio 2.12; 95% CI 1.31-3.44; p < 0.001). Additionally, baseline EEG abnormalities were associated with POD (p = 0.002). CONCLUSION: Significant IONM changes are associated with an increased risk of POD in patients undergoing cardiovascular surgery. These findings offer a basis for future research and analysis of EEG and somatosensory evoked potential monitoring to predict, detect, and prevent POD.


Assuntos
Delírio do Despertar , Monitorização Neurofisiológica Intraoperatória , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Neurofisiológica Intraoperatória/métodos , Eletroencefalografia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle
2.
Eur Spine J ; 33(4): 1644-1656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285275

RESUMO

PURPOSE: To evaluate the diagnostic accuracy of intraoperative somatosensory evoked potential (SSEP) monitoring and types of SSEP changes in predicting the risk of postoperative neurological outcomes during correction surgery for idiopathic scoliosis (IS) in the pediatric age group (≤ 21 years). METHODS: Database review was performed to identify literature on pediatric patients with IS who underwent correction with intraoperative neuromonitoring. The sensitivity, specificity, and diagnostic odds ratio (DOR) of transient and persistent SSEP changes and complete SSEP loss in predicting postoperative neurological deficits were calculated. RESULTS: Final analysis included 3778 patients. SSEP changes had a sensitivity of 72.9%, specificity of 96.8%, and DOR of 102.3, while SSEP loss had a sensitivity of 41.8%, specificity of 99.3%, and DOR of 133.2 for predicting new neurologic deficits. Transient and persistent SSEP changes had specificities of 96.8% and 99.1%, and DORs of 16.6 and 59, respectively. CONCLUSION: Intraoperative SSEP monitoring can predict perioperative neurological injury and improve surgical outcomes in pediatric scoliosis fusion surgery. LEVEL OF EVIDENCE: Level 2. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Monitorização Neurofisiológica Intraoperatória , Procedimentos Ortopédicos , Escoliose , Humanos , Criança , Adulto Jovem , Adulto , Escoliose/diagnóstico , Escoliose/cirurgia , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Intraoperatória , Procedimentos Neurocirúrgicos , Potencial Evocado Motor/fisiologia , Estudos Retrospectivos
3.
Eur Spine J ; 32(10): 3321-3332, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37626247

RESUMO

PURPOSE: The primary aim of this study was to evaluate whether TcMEP alarms can predict the occurrence of postoperative neurological deficit in patients undergoing lumbar spine surgery. The secondary aim was to determine whether the various types of TcMEP alarms including transient and persistent changes portend varying degrees of injury risk. METHODS: This was a systematic review and meta-analysis of the literature from PubMed, Web of Science, and Embase regarding outcomes of transcranial motor-evoked potential (TcMEP) monitoring during lumbar decompression and fusion surgery. The sensitivity, specificity, and diagnostic odds ratio (DOR) of TcMEP alarms for predicting postoperative deficit were calculated and presented with forest plots and a summary receiver operating characteristic curve. RESULTS: Eight studies were included, consisting of 4923 patients. The incidence of postoperative neurological deficit was 0.73% (36/4923). The incidence of deficits in patients with significant TcMEP changes was 11.79% (27/229), while the incidence in those without changes was 0.19% (9/4694). All TcMEP alarms had a pooled sensitivity and specificity of 63 and 95% with a DOR of 34.92 (95% CI 7.95-153.42). Transient and persistent changes had sensitivities of 29% and 47%, specificities of 96% and 98%, and DORs of 8.04 and 66.06, respectively. CONCLUSION: TcMEP monitoring has high specificity but low sensitivity for predicting postoperative neurological deficit in lumbar decompression and fusion surgery. Patients who awoke with new postoperative deficits were 35 times more likely to have experienced TcMEP changes intraoperatively, with persistent changes indicating higher risk of deficit than transient changes. LEVEL OF EVIDENCE II: Diagnostic Systematic Review.


Assuntos
Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória , Humanos , Potencial Evocado Motor/fisiologia , Procedimentos Neurocirúrgicos , Sensibilidade e Especificidade , Região Lombossacral , Descompressão
4.
J Stroke Cerebrovasc Dis ; 29(10): 105158, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912500

RESUMO

INTRODUCTION: Intra-operative stroke (IOS) is associated with poor clinical outcome as detection is often delayed and time of symptom onset or patient's last known well (LKW) is uncertain. Intra-operative neurophysiological monitoring (IONM) is uniquely capable of detecting onset of neurological dysfunction in anesthetized patients, thereby precisely defining time last electrically well (LEW). This novel parameter may aid in the detection of large vessel occlusion (LVO) and prompt treatment with endovascular thrombectomy (EVT). METHODS: We performed a retrospective analysis of a prospectively maintained AIS and LVO database from May 2018-August 2019. Inclusion criteria required any surgical procedure under general anesthesia (GA) utilizing EEG (electroencephalography) and/or SSEP (somatosensory evoked potentials) monitoring with development of intraoperative focal persistent changes using predefined alarm criteria and who were considered for EVT. RESULT: Five cases were identified. LKW to closure time ranged from 66 to 321 minutes, while LEW to closure time ranged from 43 to 174 min. All LVOs were in the anterior circulation. Angiography was not pursued in two cases due to large established infarct (both patients expired in the hospital). EVT was pursued in two cases with successful recanalization and spontaneous recanalization was noted in one patient (mRS 0-3 at 90 days was achieved in all 3 cases). CONCLUSIONS: This study demonstrates that significant IONM changes can accurately identify patients with an acute LVO in the operative setting. Given the challenges of recognizing peri-operative stroke, LEW may be an appropriate surrogate to quickly identify and treat IOS.


Assuntos
Eletroencefalografia , Procedimentos Endovasculares , Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Triagem , Idoso , Anestesia Geral , Bases de Dados Factuais , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/mortalidade , Feminino , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Fatores de Tempo , Resultado do Tratamento
5.
J Clin Monit Comput ; 33(2): 333-339, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29855850

RESUMO

The goal of this study was to evaluate the risk factors associated with positioning-related SSEP changes (PRSC). The study investigated the association between 18 plausible risk factors and the occurrence of intraoperative PRSC. Risk factors investigated included demographic variables, comorbidities, and procedure related variables. All patients were treated by the University of Pittsburgh Medical Center from 2010 to 2012. We used univariate and multivariate statistical methods. 69 out of the 3946 (1.75%) spinal surgeries resulted in PRSC changes. The risk of PRSC was increased for women (p < 0.001), patients older than 65 years of age (p = 0.01), higher BMI (p < 0.001) patients, smokers (p < 0.001), and patients with hypertension (p < 0.001). No associations were found between PRSC and age greater than 80 years, diabetes mellitus, cardiovascular disease, and peripheral vascular disease. Three surgical situations were associated with PRSC including abnormal baselines (p < 0.001), patients in the "superman" position (p < 0.001), and patients in surgical procedures that extended over 200 min (p = 0.03). Patients with higher BMIs and who are undergoing spinal surgery longer than 200 min, with abnormal baselines, must be positioned with meticulous attention. Gender, hypertension, and smoking were also found to be risk factors from their odds ratios.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Intraoperatória/métodos , Coluna Vertebral/cirurgia , Idoso , Idoso de 80 Anos ou mais , Feminino , Monitorização Hemodinâmica , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Procedimentos Neurocirúrgicos , Estudos Retrospectivos , Fatores de Risco
6.
Clin Neurophysiol ; 164: 40-46, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848665

RESUMO

OBJECTIVE: To determine the utility of electroencephalography (EEG) in predicting postoperative delirium (POD) in patients who underwent cardiovascular surgeries with EEG monitoring. METHODS: A total of 1161 patients who underwent cardiovascular surgeries with EEG monitoring were included in the study, and their data were retrospectively reviewed. POD assessment was done utilizing Intensive Care Delirium Screening Checklist (ICDSC). Patients with a score of > 4 on ICDSC were diagnosed with POD. RESULTS: Of 1161 patients, 131 patients had EEG changes and 56 (42.74%) of 131 patients experienced POD. Of 1030 patients without EEG changes, 219 (21.26%) experienced POD. EEG showed specificity of 91.5% and negative predictive value of 78.7% in detecting POD. On multivariable analysis, EEG changes showed a strong association with POD (ORadj 1.97 CI (1.30-2.99), p = 0.001) with persistent EEG changes showing even a higher risk of developing POD (ORadj 2.65 (1.43-4.92), p = 0.002). CONCLUSION: EEG change has specificity of 91.5% emphasizing the need for its implementation as a diagnostic tool for predicting POD. Patients with POD are two times more likely to experience significant EEG changes, especially persistent EEG changes when undergoing cardiovascular surgeries. SIGNIFICANCE: Intraoperative EEG can detect POD, and EEG changes based therapeutic interventions can mitigate POD.


Assuntos
Delírio , Eletroencefalografia , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Delírio/diagnóstico , Delírio/fisiopatologia , Delírio/etiologia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/etiologia , Procedimentos Cirúrgicos Cardiovasculares/efeitos adversos , Monitorização Neurofisiológica Intraoperatória/métodos , Valor Preditivo dos Testes , Adulto
7.
Clin Neurophysiol ; 161: 69-79, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452426

RESUMO

OBJECTIVE: To evaluate the diagnostic accuracy of intraoperative neurophysiological monitoring (IONM) during endovascular treatment (EVT) of ruptured intracranial aneurysms (rIA). METHODS: IONM and clinical data from 323 patients who underwent EVT for rIA from 2014-2019 were retrospectively reviewed. Significant IONM changes and outcomes were evaluated based on visual review of data and clinical documentation. RESULTS: Of the 323 patients undergoing EVT, significant IONM changes were noted in 30 patients (9.29%) and 46 (14.24%) experienced postprocedural neurological deficits (PPND). 22 out of 30 (73.33%) patients who had significant IONM changes experienced PPND. Univariable analysis showed changes in somatosensory evoked potential (SSEP) and electroencephalogram (EEG) were associated with PPND (p-values: <0.001 and <0.001, retrospectively). Multivariable analysis showed that IONM changes were significantly associated with PPND (Odd ratio (OR) 20.18 (95%CI:7.40-55.03, p-value: <0.001)). Simultaneous changes in both IONM modalities had specificity of 98.9% (95% CI: 97.1%-99.7%). While sensitivity when either modality had a change was 47.8% (95% CI: 33.9%-62.0%) to predict PPND. CONCLUSIONS: Significant IONM changes during EVT for rIA are associated with an increased risk of PPND. SIGNIFICANCE: IONM can be used confidently as a real time neurophysiological diagnostic guide for impending neurological deficits during EVT treatment of rIA.


Assuntos
Aneurisma Roto , Isquemia Encefálica , Eletroencefalografia , Procedimentos Endovasculares , Potenciais Somatossensoriais Evocados , Aneurisma Intracraniano , Monitorização Neurofisiológica Intraoperatória , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Aneurisma Roto/cirurgia , Aneurisma Roto/fisiopatologia , Aneurisma Intracraniano/cirurgia , Aneurisma Intracraniano/fisiopatologia , Monitorização Neurofisiológica Intraoperatória/métodos , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Estudos Retrospectivos , Potenciais Somatossensoriais Evocados/fisiologia , Idoso , Adulto , Eletroencefalografia/métodos
8.
J Neurosurg ; 140(6): 1584-1590, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157534

RESUMO

OBJECTIVE: Recovery of abducens nerve palsy (ANP) after endoscopic endonasal skull base surgery (ESBS) has been shown to be potentially predicted by postoperative ophthalmological examination. Triggered electromyography (t-EMG) and free-run electromyography (f-EMG) activity provide an intraoperative assessment of abducens nerve function, but associations with long-term ANP outcomes have not been explored. The objective of this study was to describe intraoperative abducens EMG characteristics and determine whether these electrophysiological profiles are associated with immediately postoperative and long-term ANP outcomes after ESBS. METHODS: The authors conducted a 5-year (2011-2016) retrospective case-control study of patients who underwent ESBS in whom the abducens nerve was stimulated (t-EMG). Electrophysiological metrics were compared between patients with a new postoperative ANP (cases) and those without ANP (controls). Pathologies included chordoma, pituitary adenoma, meningioma, cholesterol granuloma, and chondrosarcoma. Electrophysiological data included the presence of abnormal f-EMG activity, t-EMG stimulation voltage, stimulation threshold, evoked compound muscle action potential (CMAP) amplitude, onset latency, peak latency, and CMAP duration at various stages of the dissection. Controls were selected such that pathologies were similarly distributed between cases and controls. RESULTS: Fifty-six patients were included, 26 with new postoperative ANP and 30 controls without ANP. Abnormal f-EMG activity (28.0% vs 3.3%, p = 0.02) and lack of response to stimulation (27% vs 0%, p = 0.006) were more frequent in patients with immediately postoperative ANP than in controls. Patients with immediately postoperative ANP also had a lower median CMAP amplitude (35.0 vs 71.2 µV, p = 0.02) and longer onset latency (5.2 vs 2.8 msec, p = 0.04). Comparing patients with transient versus persistent ANP on follow-up, those with persistent ANP tended to have a lower CMAP amplitude (12.8 vs 57 µV, p = 0.07) and higher likelihood of not responding to stimulation at the end of the case (45.5% vs 7.1%, p = 0.06). Abnormal f-EMG was not associated with long-term ANP outcomes. CONCLUSIONS: The presence of f-EMG activity, lack of CMAP response to stimulation, decreased CMAP amplitude, and increased CMAP onset latency were associated with immediately postoperative ANP. Long-term ANP outcomes may be associated with t-EMG parameters, including whether the nerve is able to be stimulated once identified and CMAP amplitude. Future prospective studies may be designed to standardize abducens nerve electrophysiological monitoring protocols to further refine operative and prognostic utility.


Assuntos
Doenças do Nervo Abducente , Eletromiografia , Complicações Pós-Operatórias , Base do Crânio , Humanos , Estudos Retrospectivos , Masculino , Doenças do Nervo Abducente/etiologia , Doenças do Nervo Abducente/fisiopatologia , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto , Idoso , Base do Crânio/cirurgia , Complicações Pós-Operatórias/etiologia , Neoplasias da Base do Crânio/cirurgia
9.
J Cardiovasc Dev Dis ; 11(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248897

RESUMO

Perioperative transient ischemic attacks (PTIAs) are associated with significantly increased rates of postoperative complications such as low cardiac output, atrial fibrillation, and significantly higher mortality in cardiac procedures. The current literature on PTIAs is sparse and understudied. Therefore, we aim to understand the effects of PTIA on hospital utilization, readmission, and morbidity. Using data on all the cardiac procedures at the University of Pittsburgh Medical Center from 2011 to 2019, fine and gray analysis was performed to identify whether PTIAs and covariables correlate with increased hospital utilization, stroke, all-cause readmission, Major Adverse Cardiac and Cerebrovascular Events (MACCE), MI, and all-cause mortality. Logistic regression for longer hospitalization showed that PTIA (HR: 2.199 [95% CI: 1.416-3.416] increased utilization rates. Fine and gray modeling indicated that PTIA (HR: 1.444 [95% CI: 1.096-1.902], p < 0.01) increased the rates of follow-up all-cause readmission. However, PTIA (HR: 1.643 [95% CI: 0.913-2.956] was not statistically significant for stroke readmission modeling. Multivariate modeling for MACCE events within 30 days of surgery (HR: 0.524 [95% CI: 0.171-1.605], p > 0.25) and anytime during the follow-up period (HR: 1.116 [95% CI: 0.825-1.509], p > 0.45) showed no significant correlation with PTIA. As a result of PTIA's significant burden on the healthcare system due to increased utilization, it is critical to better define and recognize PTIA for timely management to improve perioperative outcomes.

10.
J Neurosurg ; 139(3): 864-872, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840739

RESUMO

OBJECTIVE: A reluctance to monitor extraocular cranial nerve (EOCN) function has restricted skull base surgery worldwide. Spontaneous and triggered electromyography (EMG) monitoring can be recorded intraoperatively to identify and assess potential cranial nerve injury. Determining the conductive function of EOCNs requires the collection of clear, reliable, and repeatable compound muscle action potentials (CMAPs) secondary to stimulation. EOCN EMG needle electrodes can, although infrequently, cause ocular morbidity including hematoma, edema, and scleral laceration. The aim of this study was to ascertain if minimally invasive 7-mm superficial needle electrodes would record CMAPs as well as standard 13-mm intraorbital electrodes. METHODS: Conventionally, the authors have monitored EOCN function with intraorbital placement of paired 13-mm needle electrodes into three extraocular muscles: medial rectus, superior oblique, and lateral rectus. A prospective case-control study was performed using shorter (7-mm) needle electrodes. A single minimally invasive electrode was placed superficially near each extraocular muscle and coupled with a common reference. CMAPs were recorded from the minimally invasive electrodes and compared with CMAPs recorded from the paired intraorbital electrodes. The presence or absence of CMAPs was analyzed and compared among EMG recording techniques. RESULTS: A total of 429 CMAPs were analyzed from 71 EOCNs in 25 patients. The experimental setup yielded 167 true-positive (39%), 106 false-positive (25%), 17 false-negative (4%), and 139 true-negative (32%) responses. These values were used to calculate the sensitivity (91%), specificity (57%), positive predictive value (61%), and negative predictive value (89%). EOCN electrodes were placed in 82 total eyes in 58 patients (CMAPs were obtained in 25 patients). Twenty-six eyes showed some degree of edema, bruising, or bleeding, which was transient and self-resolving. Three eyes in different patients had complications from needle placement or extraction including conjunctival hemorrhage, periorbital ecchymosis, and corneal abrasion, ptosis, and upper eyelid edema. CONCLUSIONS: Because of artifact contamination, 106 false-positive responses (25%), and 17 false-negative responses (4%), the minimally invasive EMG technique cannot reliably record CMAP responses intraoperatively as well as the intraorbital technique. Less-invasive techniques can lead to an inaccurate EOCN assessment and potential postoperative morbidity. EOCN palsies can be debilitating and lifelong; therefore, the benefits of preserving EOCN function outweigh the potential risks of morbidity from electrode placement. EMG monitoring with intraorbital electrodes remains the most reliable method of intraoperative EOCN assessment.


Assuntos
Nervos Cranianos , Músculos Oculomotores , Humanos , Eletromiografia/métodos , Estudos de Casos e Controles , Eletrodos , Músculos Oculomotores/cirurgia , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia
11.
J Thorac Cardiovasc Surg ; 165(6): 1971-1981.e2, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34384591

RESUMO

OBJECTIVE: To evaluate the ability of intraoperative neurophysiologic monitoring (IONM) during aortic arch reconstruction with hypothermic circulatory arrest (HCA) to predict early (<48 hours) adverse neurologic events (ANE; stroke or transient ischemic attack) and operative mortality. METHODS: This was an observational study of aortic arch surgeries requiring HCA from 2010 to 2018. Patients were monitored with electroencephalogram (EEG) and somatosensory evoked potentials (SSEP). Baseline characteristics and postoperative outcomes were compared according to presence or absence of IONM changes, which were defined as any acute variation in SSEP or EEG, compared with baseline. Multivariable logistic regression analysis was used to assess the association of IONM changes with operative mortality and early ANE. RESULTS: A total of 563 patients underwent aortic arch reconstruction with HCA and IONM. Of these, 119 (21.1%) patients had an IONM change, whereas 444 (78.9%) did not. Patients with IONM changes had increased operative mortality (22.7% vs 4.3%) and increased early ANE (10.9% vs 2.9%). In multivariable analysis, SSEP changes were correlated with early ANE (odds ratio [OR], 4.68; 95% confidence interval [CI], 1.51-14.56; P = .008), whereas EEG changes were not (P = .532). Permanent SSEP changes were correlated with early ANE (OR, 4.56; 95% CI, 1.51-13.77; P = .007), whereas temperature-related SSEP changes were not (P = .997). Finally, any IONM change (either SSEP or EEG) was correlated with operative mortality (OR, 5.82; 95% CI, 2.72-12.49; P < .001). CONCLUSIONS: Abnormal IONM events during aortic arch reconstruction with HCA portend worse neurologic outcomes and operative mortality and have a negative predictive value of 97.1%. SSEP might be more sensitive than EEG for predicting early ANE, especially when SSEP changes are permanent.


Assuntos
Monitorização Neurofisiológica Intraoperatória , Acidente Vascular Cerebral , Humanos , Aorta Torácica/cirurgia , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia , Valor Preditivo dos Testes , Perfusão/efeitos adversos , Circulação Cerebrovascular
12.
J Clin Neurophysiol ; 40(2): 180-186, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510090

RESUMO

INTRODUCTION: This study aimed to determine the ability of multimodality intraoperative neurophysiologic monitoring, including somatosensory evoked potentials (SSEP) and EEG, to predict perioperative clinical stroke and stroke-related mortality after open-heart surgery in high-risk patients. METHODS: The records of all consecutive patients who underwent coronary artery bypass grafting, and cardiac valve repair/replacement with high risk for stroke who underwent both SSEP and EEG recording at the University of Pittsburgh Medical Center between 2009 and 2015 were reviewed. Sensitivity and specificity of these modalities to predict in-hospital clinical strokes and stroke-related mortality were calculated. RESULTS: A total of 531 patients underwent open cardiac procedures monitored using SSEP and EEG. One hundred thirty-one patients (24.67%) experienced significant changes in either modality. Fourteen patients (2.64%) suffered clinical strokes within 24 hours after surgery, and eight patients (1.50%) died during their hospitalization. The incidence of in-hospital clinical stroke and stroke-related mortality among patients who experienced a significant change in monitoring compared with those with no significant change was 11.45% versus 1.75%. The sensitivity and specificity of significant changes in either SSEP or EEG to predict in-hospital major stroke and stroke-related mortality were 0.93 and 0.77, respectively. CONCLUSIONS: Intraoperative neurophysiologic monitoring with SSEP and EEG has high sensitivity and specificity in predicting perioperative stroke and stroke-related mortality after open cardiac procedures. These results support the benefits of multimodality neuromonitoring during cardiac surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Monitorização Neurofisiológica Intraoperatória , Acidente Vascular Cerebral , Humanos , Monitorização Neurofisiológica Intraoperatória/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia , Sensibilidade e Especificidade , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Estudos Retrospectivos
13.
World Neurosurg ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37380051

RESUMO

OBJECTIVE: Endovascular treatment (EVT) of unruptured cerebral aneurysms (UCA) offers a safer alternative to clipping. However, it is still associated with an increased risk for Postprocedural Neurological deficit (PPND). Prompt recognition using intraoperative neurophysiologic monitoring (IONM) and intervention can reduce the incidence and impact of new postoperative neurological complications. We aim to evaluate the diagnostic accuracy of IONM in predicting PPND after EVT of UCA. METHODS: We included 414 patients who underwent EVT for UCA from 2014 to 2019. The sensitivities, specificities, and diagnostic odds ratio of somatosensory evoked potentials and electroencephalography monitoring methods were calculated. We also determined their diagnostic accuracy using receiver operating characteristic plots. RESULTS: The highest sensitivity of 67.7% (95% confidence interval {CI}, 34.9%-90.1%) was obtained when either modality had a change. Simultaneous changes in both modalities have the highest specificity of 97.8% (95% CI, 95.8%-99.0%). The area under the receiver operating characteristic curve was 0.795 (95% CI, 0.655-0.935) for changes in either modality. CONCLUSIONS: IONM with somatosensory evoked potentials alone or in combination with electroencephalography has high diagnostic accuracy in detecting periprocedural complications and resultant PPND during EVT of UCA.

14.
Ann Thorac Surg ; 116(3): 623-629, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36634835

RESUMO

BACKGROUND: Perioperative stroke after cardiac surgical procedures carries significant morbidity. Dual intraoperative neurophysiological monitoring with electroencephalography (EEG) and somatosensory-evoked potentials detects cerebral hypoperfusion and predicts postoperative stroke in noncardiac procedures. We further evaluated preoperative risk factors and intraoperative neuromonitoring ability to predict postoperative stroke after cardiac operations. METHODS: All patients who underwent cardiac operations with intraoperative neurophysiological monitoring from 2009 to 2020 at a single academic medical center were retrospectively analyzed. Patients with circulatory arrest were excluded. Risks factors analyzed were sex, age, tobacco use, hypertension, diabetes mellitus, dyslipidemia, atrial fibrillation, prior cerebrovascular accident, cerebrovascular disease, antiplatelet/anticoagulant use, abnormal somatosensory-evoked potentials and EEG baselines, and significant somatosensory-evoked potentials and EEG change as well as their permanence. Patients were divided into 2 groups by 30-day postoperative stroke occurrence. Univariate and multivariate logistical regressions were used for postoperative stroke significant predictors, and Kaplan-Meier curves estimated survival. RESULTS: The study included 620 patients (67.6% men), mean age 65.1 ± 14.1 years, with stroke in 5.32%. In univariate analysis, diabetes (odds ratio [OR], 2.62) and permanence of EEG change (OR, 5.35) were each associated with increased postoperative stroke odds. In multivariate analysis, diabetes (OR, 2.64) and permanent EEG change (OR, 4.22) were independently significantly associated with postoperative stroke. Overall survival was significantly better for patients with no intraoperative neurophysiological monitoring changes (P < .005). CONCLUSIONS: Permanent EEG change and diabetes were significant postoperative stroke predictors in cardiac operations. Furthermore, overall survival out to 10 years postoperatively was significantly higher in the group without intraoperative neurophysiological monitoring changes, emphasizing its important predictive role.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Transtornos Cerebrovasculares , Monitorização Neurofisiológica Intraoperatória , Acidente Vascular Cerebral , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Monitorização Neurofisiológica Intraoperatória/métodos , Transtornos Cerebrovasculares/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos
15.
Global Spine J ; : 21925682231219224, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047537

RESUMO

STUDY DESIGN: Systematic Review and Meta-analysis. OBJECTIVE: The purpose of this study was to evaluate whether transcranial motor evoked potential (TcMEP) alarms can predict postoperative neurologic complications in patients undergoing cervical spine decompression surgery. METHODS: A meta-analysis of the literature was performed using PubMed, Web of Science, and Embase to retrieve published reports on intraoperative TcMEP monitoring for patients undergoing cervical spine decompression surgery. The sensitivity, specificity, and diagnostic odds ratio (DOR), of overall, reversible, and irreversible TcMEP changes for predicting postoperative neurological deficit were calculated. A subgroup analysis was performed to compare anterior vs posterior approaches. RESULTS: Nineteen studies consisting of 4608 patients were analyzed. The overall incidence of postoperative neurological deficits was 2.58% (119/4608). Overall TcMEP changes had a sensitivity of 56%, specificity of 94%, and DOR of 19.26 for predicting deficit. Reversible and irreversible changes had sensitivities of 16% and 49%, specificities of 95% and 98%, and DORs of 3.54 and 71.74, respectively. In anterior procedures, TcMEP changes had a DOR of 17.57, sensitivity of 49%, and specificity of 94%. In posterior procedures, TcMEP changes had a DOR of 21.01, sensitivity of 55%, and specificity of 94%. CONCLUSION: TcMEP monitoring has high specificity but low sensitivity for predicting postoperative neurological deficit in cervical spine decompression surgery. Patients with new postoperative neurological deficits were 19 times more likely to have experienced intraoperative TcMEP changes than those without new deficits, with irreversible TcMEP changes indicating a much higher risk of deficit than reversible TcMEP changes.

16.
Clin Neurophysiol ; 139: 43-48, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525076

RESUMO

OBJECTIVE: We examined significant intraoperative neurophysiologic monitoring (IONM) changes and perioperative stroke as independent risk factors of long-term cardiovascular-related mortality in patients who have undergone carotid endarterectomy (CEA). METHODS: Records of patients who underwent CEA with IONM at the University of Pittsburgh Medical Center between January 1, 2009 and December 31, 2019 were analyzed retrospectively. Cardiovascular-related mortality was compared between the significant IONM change group and no IONM change group and between the perioperative stroke group and no perioperative stroke group. RESULTS: Our final cohort consisted of 2,090 patients. Patients with significant IONM changes showed nearly twice the rate of cardiovascular-related mortality up to 10 years post-CEA (hazard ratio (HR) = 1.98; 95% confidence interval (CI) [1.20 - 3.26]). Patients with perioperative stroke were four times more likely than patients without perioperative stroke to experience cardiovascular-related mortality (HR = 4.09; 95% CI [2.13 - 7.86]). CONCLUSIONS: Among CEA patients who underwent CEA and who experienced significant IONM changes or perioperative stroke, we observed long-term increased and sustained risk of cardiovascular-related mortality. SIGNIFICANCE: Significant IONM changes are valuable in predicting the risk of long-term outcomes following CEA.


Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , Monitorização Neurofisiológica Intraoperatória , Acidente Vascular Cerebral , Estenose das Carótidas/cirurgia , Endarterectomia das Carótidas/efeitos adversos , Humanos , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/etiologia , Resultado do Tratamento
17.
Clin Neurophysiol ; 141: 1-8, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35797873

RESUMO

OBJECTIVE: Transient ischemic attacks (TIA) after carotid endarterectomy (CEA) are not well-studied. We aimed to investigate the characteristics and the predictive role of intraoperative neurophysiological monitoring (IONM) in TIA post-CEA. METHODS: Patients who underwent CEA utilizing IONM from 2009-2020 were included. Analyses included TIA incidence, sensitivity, specificity, and predictive values of IONM, risk factor regression analyses, and mortality Kaplan Meier plots. RESULTS: Out of 2232 patients, 46 experienced TIA, 14 of which were within 24 hours of CEA (p < 0.01). Nine of these patients displayed significant IONM changes during CEA. The odds of TIA increased with somatosensory evoked potential (SSEP) changes (Odds Ratio (OR): 2.48 95% Confidence Interval (CI): 1.14-5.4), electroencephalogram (EEG) changes (OR: 2.65 95% CI: 1.22-5.77), and combined SSEP/EEG changes (OR: 2.98 95% CI: 1.17-7.55). Patients with TIA were less likely to be alive after an average of 4.3 years (OR: 0.5 95% CI: 0.26-0.96). CONCLUSIONS: The odds a patient will have TIA post-CEA are greater in patients with IONM changes. This risk is inversely related to the time post-CEA. SIGNIFICANCE: Changes in IONM during CEA predict postoperative TIA. Post-CEA TIA may increase long-term mortality, thus further research is needed to better elucidate clinical implications of postoperative TIA.


Assuntos
Endarterectomia das Carótidas , Monitorização Neurofisiológica Intraoperatória , Ataque Isquêmico Transitório , Acidente Vascular Cerebral , Endarterectomia das Carótidas/efeitos adversos , Humanos , Monitorização Neurofisiológica Intraoperatória/efeitos adversos , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/etiologia , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Resultado do Tratamento
18.
Pediatr Neurol ; 134: 25-30, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785591

RESUMO

BACKGROUND: Evaluate the accuracy of brain-based blood biomarkers neuron-specific enolase (NSE) and S100b and electroencephalography (EEG) features alone and in combination with prognosticate 6-month mortality after pediatric cardiac arrest. We hypothesized that the combination of blood brain-based biomarkers and EEG features would have superior classification accuracy of outcome versus either alone. METHODS: Children (n = 58) aged between 1 week and 17 years admitted to the ICU following cardiac arrest at a tertiary care children's hopital were eligible for this secondary study. Blood NSE and S100b were measured closest to 24 hours after return of spontaneous circulation (ROSC). EEGs closest to 24 hours (median 11, interquartile range [IQR] 6 to 16 h) post-ROSC were evaluated by two epileptologists. EEG grade was informed by background frequency, amplitude, and continuity. Sleep spindles were present or absent. Mortality was assessed at six months post-ROSC. Area under the receiver operator curve (AUC) was performed for individual and combined brain-based biomarkers and EEG features. RESULTS: Children were aged 2.6 (IQR 0.6 to 10.4) years, and 25 (43%) died. Children who died had increased blood NSE (49.7 [28.0 to 63.1] vs 18.2 [9.8 to 31.8] ng/mL) and S100b (0.118 [0.036 to 0.296] vs 0.012 [0.003 to 0.021] ng/mL) and poor (discontinuous or isoelectric) EEG grade (76% vs 33%) more frequently than survivors (P < 0.05). AUC for NSE to predict mortality was 0.789, and was 0.841 when combined with EEG grade and spindles. S100b AUC for mortality was 0.856 and was optimal alone. CONCLUSIONS: In this exploratory study, the combination of brain-based biomarkers and EEG features may provide more accurate prognostication than either test alone after pediatric cardiac arrest.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Biomarcadores , Lesões Encefálicas/complicações , Criança , Eletroencefalografia , Parada Cardíaca/complicações , Humanos , Lactente , Prognóstico , Estudos Prospectivos
19.
Global Spine J ; 12(5): 1003-1011, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34013769

RESUMO

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVES: Malposition of pedicle screws during instrumentation in the lumbar spine is associated with complications secondary to spinal cord or nerve root injury. Intraoperative triggered electromyographic monitoring (t-EMG) may be used during instrumentation for early detection of malposition. The association between lumbar pedicle screws stimulated at low EMG thresholds and postoperative neurological deficits, however, remains unknown. The purpose of this study is to assess whether a low threshold t-EMG response to lumbar pedicle screw stimulation can serve as a predictive tool for postoperative neurological deficit. METHODS: The present study is a meta-analysis of the literature from PubMed, Web of Science, and Embase identifying prospective/retrospective studies with outcomes of patients who underwent lumbar spinal fusion with t-EMG testing. RESULTS: The total study cohort consisted of 2,236 patients and the total postoperative neurological deficit rate was 3.04%. 10.78% of the patients incurred at least 1 pedicle screw that was stimulated below the respective EMG alarm threshold intraoperatively. The incidence of postoperative neurological deficits in patients with a lumbar pedicle screw stimulated below EMG alarm threshold during placement was 13.28%, while only 1.80% in the patients without. The pooled DOR was 10.14. Sensitivity was 49% while specificity was 88%. CONCLUSIONS: Electrically activated lumbar pedicle screws resulting in low t-EMG alarm thresholds are highly specific but weakly sensitive for new postoperative neurological deficits. Patients with new postoperative neurological deficits after lumbar spine surgery were 10 times more likely to have had a lumbar pedicle screw stimulated at a low EMG threshold.

20.
Spine (Phila Pa 1976) ; 46(2): E139-E145, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347093

RESUMO

STUDY DESIGN: Retrospective observational study. OBJECTIVE: It has been shown that pedicle screw stimulation thresholds less than or equal to 8 mA yield a very high diagnostic accuracy of detecting misplaced screws in spinal surgery. In our study, we determined clinical implications of low stimulation thresholds. SUMMARY OF BACKGROUND DATA: Posterior lumbar spinal fusions (PSF), using pedicle screws, are performed to treat many spinal pathologies, but misplaced pedicle screws can result in new postoperative neurological deficits. METHODS: Patients with pedicle screw stimulation testing who underwent PSF between 2010 and 2012 at the University of Pittsburgh Medical Center (UPMC) were included in the study. We evaluated the sensitivity, specificity, and diagnostic odds ratio (DOR) to determine how effectively low pedicle screw responses predict new postoperative lower extremity neurological deficits. RESULTS: One thousand one hundred seventy nine eligible patients underwent 8584 pedicle screw stimulations with lower extremity somatosensory evoked potentials (LE SSEP) monitoring for lumbar fusion surgery. One hundred twenty one of these patients had 187 pedicle screws with a stimulation response at a threshold less than or equal to 8 mA. Smoking had a significant correlation to pedicle screw stimulation less than or equal to 8 mA (P = 0.012). A threshold of less than or equal to 8 mA had a sensitivity/specificity of 0.32/0.90 with DOR of 4.34 [1.83, 10.27] and an area under the ROC curve (AUC) of 0.61 [0.49, 0.74]. Patients with screw thresholds less than or equal to 8 mA and abnormal baselines had a DOR of 9.8 [95% CI: 2.13-45.17] and an AUC of 0.73 [95% CI: 0.50-0.95]. CONCLUSION: Patients with pedicle screw stimulation thresholds less than or equal to 8 mA are 4.34 times more likely to have neurological clinical manifestations. Smoking and LE deficits were shown to be significantly correlated with pedicle screw stimulation thresholds less than or equal to 8 mA. Low stimulation thresholds result in a high specificity of 90%. Pedicle screw stimulation less than or equal to 8 mA can serve as an accurate rule in test for postoperative neurological deficit, warranting reevaluation of screw placement and/or replacement intraoperatively.Level of Evidence: 3.


Assuntos
Região Lombossacral/cirurgia , Parafusos Pediculares , Fusão Vertebral/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Feminino , Humanos , Extremidade Inferior , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA