RESUMO
The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.
Assuntos
Ad26COVS1/imunologia , Vacina BNT162/imunologia , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , Linfócitos T/imunologiaRESUMO
Because no currently available vaccine can prevent HIV infection, pre-exposure prophylaxis (PrEP) with antiretrovirals (ARVs) is an important tool for combating the HIV pandemic1,2. Long-acting ARVs promise to build on the success of current PrEP strategies, which must be taken daily, by reducing the frequency of administration3. GS-CA1 is a small-molecule HIV capsid inhibitor with picomolar antiviral potency against a broad array of HIV strains, including variants resistant to existing ARVs, and has shown long-acting therapeutic potential in a mouse model of HIV infection4. Here we show that a single subcutaneous administration of GS-CA1 provides long-term protection against repeated rectal simian-human immunodeficiency virus (SHIV) challenges in rhesus macaques. Whereas all control animals became infected after 15 weekly challenges, a single 300 mg kg-1 dose of GS-CA1 provided per-exposure infection risk reduction of 97% for 24 weeks. Pharmacokinetic analysis showed a correlation between GS-CA1 plasma concentration and protection from SHIV challenges. GS-CA1 levels greater than twice the rhesus plasma protein-adjusted 95% effective concentration conferred 100% protection in this model. These proof-of-concept data support the development of capsid inhibitors as a novel long-acting PrEP strategy in humans.
Assuntos
Antirretrovirais , Proteínas do Capsídeo , Capsídeo , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/metabolismo , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacosRESUMO
The Ad26.COV2.S vaccine1-3 has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies1. However, the immunogenicity of this vaccine in humans against SARS-CoV-2 variants of concern remains unclear. Here we report humoral and cellular immune responses from 20 Ad26.COV2.S vaccinated individuals from the COV1001 phase I-IIa clinical trial2 against the original SARS-CoV-2 strain WA1/2020 as well as against the B.1.1.7, CAL.20C, P.1 and B.1.351 variants of concern. Ad26.COV2.S induced median pseudovirus neutralizing antibody titres that were 5.0-fold and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 after vaccination. Median binding antibody titres were 2.9-fold and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020. Antibody-dependent cellular phagocytosis, complement deposition and natural killer cell activation responses were largely preserved against the B.1.351 variant. CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1 and CAL.20C variants. These data show that neutralizing antibody responses induced by Ad26.COV2.S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Ad26COVS1 , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Humanos , Imunidade Celular , Imunidade Humoral , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto JovemRESUMO
The emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines1,2. The Ad26.COV2.S vaccine expresses a stabilized spike protein from the WA1/2020 strain of SARS-CoV-2, and has recently demonstrated protective efficacy against symptomatic COVID-19 in humans in several geographical regions-including in South Africa, where 95% of sequenced viruses in cases of COVID-19 were the B.1.351 variant3. Here we show that Ad26.COV2.S elicits humoral and cellular immune responses that cross-react with the B.1.351 variant and protects against B.1.351 challenge in rhesus macaques. Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared to WA1/2020, but elicited comparable CD8 and CD4 T cell responses against the WA1/2020, B.1.351, B.1.1.7, P.1 and CAL.20C variants. B.1.351 infection of control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection. Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated macaques after B.1.351 challenge. These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. Our findings have important implications for vaccine control of SARS-CoV-2 variants of concern.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , SARS-CoV-2/imunologia , Ad26COVS1 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/imunologia , COVID-19/patologia , Feminino , Macaca mulatta/virologia , Masculino , Nariz/virologia , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Replicação ViralRESUMO
Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Administração Oral , Animais , Feminino , Macaca mulatta , Masculino , Eficácia de VacinasRESUMO
Emerging SARS-CoV-2 variants of concern that overcome natural and vaccine-induced immunity threaten to exacerbate the COVID-19 pandemic. Increasing evidence suggests that neutralizing antibody (NAb) responses are a primary mechanism of protection against infection. However, little is known about the extent and mechanisms by which natural immunity acquired during the early COVID-19 pandemic confers cross-neutralization of emerging variants. In this study, we investigated cross-neutralization of the B.1.1.7 and B.1.351 SARS-CoV-2 variants in a well-characterized cohort of early pandemic convalescent subjects. We observed modestly decreased cross-neutralization of B.1.1.7 but a substantial 4.8-fold reduction in cross-neutralization of B.1.351. Correlates of cross-neutralization included receptor binding domain (RBD) and N-terminal domain (NTD) binding antibodies, homologous NAb titers, and membrane-directed T cell responses. These data shed light on the cross-neutralization of emerging variants by early pandemic convalescent immune responses. IMPORTANCE Widespread immunity to SARS-CoV-2 will be necessary to end the COVID-19 pandemic. NAb responses are a critical component of immunity that can be stimulated by natural infection as well as vaccines. However, SARS-CoV-2 variants are emerging that contain mutations in the spike gene that promote evasion from NAb responses. These variants may therefore delay control of the COVID-19 pandemic. We studied whether NAb responses from early COVID-19 convalescent patients are effective against the two SARS-CoV-2 variants, B.1.1.7 and B.1.351. We observed that the B.1.351 variant demonstrates significantly reduced susceptibility to early pandemic NAb responses. We additionally characterized virological, immunological, and clinical features that correlate with cross-neutralization. These studies increase our understanding of emerging SARS-CoV-2 variants.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , Pandemias , SARS-CoV-2/imunologia , Adulto , Reações Cruzadas , Humanos , MasculinoRESUMO
Importance: Pregnant women are at increased risk of morbidity and mortality from COVID-19 but have been excluded from the phase 3 COVID-19 vaccine trials. Data on vaccine safety and immunogenicity in these populations are therefore limited. Objective: To evaluate the immunogenicity of COVID-19 messenger RNA (mRNA) vaccines in pregnant and lactating women, including against emerging SARS-CoV-2 variants of concern. Design, Setting, and Participants: An exploratory, descriptive, prospective cohort study enrolled 103 women who received a COVID-19 vaccine from December 2020 through March 2021 and 28 women who had confirmed SARS-CoV-2 infection from April 2020 through March 2021 (the last follow-up date was March 26, 2021). This study enrolled 30 pregnant, 16 lactating, and 57 neither pregnant nor lactating women who received either the mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) COVID-19 vaccines and 22 pregnant and 6 nonpregnant unvaccinated women with SARS-CoV-2 infection. Main Outcomes and Measures: SARS-CoV-2 receptor binding domain binding, neutralizing, and functional nonneutralizing antibody responses from pregnant, lactating, and nonpregnant women were assessed following vaccination. Spike-specific T-cell responses were evaluated using IFN-γ enzyme-linked immunospot and multiparameter intracellular cytokine-staining assays. Humoral and cellular immune responses were determined against the original SARS-CoV-2 USA-WA1/2020 strain as well as against the B.1.1.7 and B.1.351 variants. Results: This study enrolled 103 women aged 18 to 45 years (66% non-Hispanic White) who received a COVID-19 mRNA vaccine. After the second vaccine dose, fever was reported in 4 pregnant women (14%; SD, 6%), 7 lactating women (44%; SD, 12%), and 27 nonpregnant women (52%; SD, 7%). Binding, neutralizing, and functional nonneutralizing antibody responses as well as CD4 and CD8 T-cell responses were present in pregnant, lactating, and nonpregnant women following vaccination. Binding and neutralizing antibodies were also observed in infant cord blood and breast milk. Binding and neutralizing antibody titers against the SARS-CoV-2 B.1.1.7 and B.1.351 variants of concern were reduced, but T-cell responses were preserved against viral variants. Conclusion and Relevance: In this exploratory analysis of a convenience sample, receipt of a COVID-19 mRNA vaccine was immunogenic in pregnant women, and vaccine-elicited antibodies were transported to infant cord blood and breast milk. Pregnant and nonpregnant women who were vaccinated developed cross-reactive antibody responses and T-cell responses against SARS-CoV-2 variants of concern.
Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Sangue Fetal/imunologia , Imunogenicidade da Vacina , Leite Humano/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Neutralizantes/sangue , Vacina BNT162 , Reações Cruzadas/imunologia , Feminino , Humanos , Imunoensaio , Lactação , Leucócitos Mononucleares/fisiologia , Pessoa de Meia-Idade , Gravidez/imunologia , Estudos Prospectivos , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Adulto Jovem , Vacinas de mRNAAssuntos
Vacinas contra COVID-19/farmacocinética , Imunogenicidade da Vacina/fisiologia , Vacina de mRNA-1273 contra 2019-nCoV/farmacocinética , Ad26COVS1/farmacocinética , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacina BNT162/farmacocinética , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Humanos , Linfócitos T/fisiologiaRESUMO
OBJECTIVES: Prior studies have associated morbidity following anatomic lung resection with prolonged postoperative length of stay; however, each complication's individual impact on length of stay as a continuous variable has not been studied. The purpose of this study was to determine the risk-adjusted increase in length of stay associated with each individual postoperative complications following anatomic lung resection. METHODS: Patients who underwent anatomic lung resection cataloged in the prospectively collected American College of Surgeons National Surgical Quality Improvement Program participant use file, 2005-2018, were targeted. The association between preoperative characteristics, postoperative complications and length of stay in days was tested. A negative binomial model adjusting for the effect of preoperative characteristics and 18 concurrent postoperative complications was used to generate incidence rate ratios. This model was fit to generate risk-adjusted increases in length of stay by complication. RESULTS: Of 32 133 patients, 5065 patients (15.8%) experienced at least one post-operative complication. The most frequent complications were pneumonia (n = 1829, 5.7%), the need for transfusion (n = 1794, 5.6%) and unplanned reintubation (n = 1064, 3.3%). The occurrence of each of the 18 individual complications was associated with significantly increased length of stay. This finding persisted after risk-adjustment, with the greatest risk-adjusted increases being associated with prolonged ventilation (+17.4 days), followed by septic shock (+17.2 days), acute renal failure (+16.5 days) and deep surgical site infection (+13.2 days). CONCLUSIONS: All 18 postoperative complications studied following anatomic lung resection were associated with significant risk-adjusted increases in length of stay, ranging from an increase of 17.4 days with prolonged ventilation to 2.6 days following the need for transfusion.
Assuntos
Tempo de Internação , Pneumonectomia , Complicações Pós-Operatórias , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Feminino , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Idoso , Pneumonectomia/efeitos adversos , Fatores de Risco , Estudos RetrospectivosRESUMO
BACKGROUND: Precise estimates of risk-adjusted increases in postoperative length of stay (LOS) associated with postoperative complications across a range of complications and operations are not available in the existing literature. METHODS: Associations between preoperative characteristics, postoperative complications and postoperative LOS were tested using medians, interquartile ranges, and nonparametric rank sum tests in a retrospective cohort study using the 2005-2018 American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) dataset. A negative binomial model was used with postoperative LOS as the dependent variable and preoperative characteristics and postoperative complications as independent variables. The model was applied to estimate each patient's postoperative LOS with and without each postoperative complication to measure the association between each complication and risk-adjusted change in postoperative LOS. RESULTS: A total of 4,495,582 patients were included. After risk-adjustment, occurrence of each postoperative complication was associated with significantly increased postoperative LOS (between + 3.9 and + 20.1 days, p < 0.0001). The longest risk-adjusted postoperative LOS increases were associated with prolonged ventilator use (+ 20.1 days), wound disruption (+ 19.4 days), and acute renal failure (+ 17.1 days). CONCLUSION: Occurrence of any postoperative complication was associated with increased risk-adjusted postoperative LOS. Degree of increase varied by complication. These data could be useful for patient counseling, allocation of resources, discharge planning, and quality improvement efforts.
RESUMO
Despite the availability of several effective SARS-CoV-2 vaccines, additional vaccines will be required for optimal global vaccination. In this study, we investigate the immunogenicity and protective efficacy of the GBP510 protein subunit vaccine adjuvanted with AS03, which has recently been authorized for marketing in South Korea under the trade name SKYCovioneTM. The antigen in GBP510/AS03 is a two-part recombinant nanoparticle, which displays 60 receptor binding domain (RBD) proteins of SARS-CoV-2 Spike on its surface. In this study we show that GBP510/AS03 induced robust immune responses in rhesus macaques and protected against a high-dose SARS-CoV-2 Delta challenge. We vaccinated macaques with two or three doses of GBP510/AS03 matched to the ancestral Wuhan strain of SARS-CoV-2 or with two doses of GBP510/AS03 matched to the ancestral strain and one dose matched to the Beta strain. Following the challenge with Delta, the vaccinated macaques rapidly controlled the virus in bronchoalveolar lavage and nasal swabs. Binding and neutralizing antibody responses prior to challenge correlated with protection against viral replication postchallenge. These data are consistent with data with this vaccine from the phase 3 clinical trial.
RESUMO
Omicron spike (S) encoding vaccines as boosters, are a potential strategy to improve COVID-19 vaccine efficacy against Omicron. Here, macaques (mostly females) previously immunized with Ad26.COV2.S, are boosted with Ad26.COV2.S, Ad26.COV2.S.529 (encoding Omicron BA.1 S) or a 1:1 combination of both vaccines. All booster vaccinations elicit a rapid antibody titers increase against WA1/2020 and Omicron S. Omicron BA.1 and BA.2 antibody responses are most effectively boosted by vaccines including Ad26.COV2.S.529. Independent of vaccine used, mostly WA1/2020-reactive or WA1/2020-Omicron BA.1 cross-reactive B cells are detected. Ad26.COV2.S.529 containing boosters provide only slightly higher protection of the lower respiratory tract against Omicron BA.1 challenge compared with Ad26.COV2.S-only booster. Antibodies and cellular immune responses are identified as complementary correlates of protection. Overall, a booster with an Omicron-spike based vaccine provide only moderately improved immune responses and protection compared with the original Wuhan-Hu-1-spike based vaccine, which still provide robust immune responses and protection against Omicron.
Assuntos
COVID-19 , Vacinas , Feminino , Animais , Humanos , Masculino , Ad26COVS1 , Vacinas contra COVID-19 , Macaca , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
The COVID-19 pandemic marks the third coronavirus pandemic this century (SARS-CoV-1, MERS, SARS-CoV-2), emphasizing the need to identify and evaluate conserved immunogens for a pan-sarbecovirus vaccine. Here we investigate the potential utility of a T-cell vaccine strategy targeting conserved regions of the sarbecovirus proteome. We identified the most conserved regions of the sarbecovirus proteome as portions of the RNA-dependent RNA polymerase (RdRp) and Helicase proteins, both of which are part of the coronavirus replication transcription complex (RTC). Fitness constraints suggest that as SARS-CoV-2 continues to evolve these regions may better preserve cross-reactive potential of T-cell responses than Spike, Nucleocapsid, or Membrane proteins. We sought to determine if vaccine-elicited T-cell responses to the highly conserved regions of the RTC would reduce viral loads following challenge with SARS-CoV-2 in mice using a rhesus adenovirus serotype 52 (RhAd52) vector. The RhAd52.CoV.Consv vaccine generated robust cellular immunity in mice and led to significant reductions in viral loads in the nasal turbinates following challenge with a mouse-adapted SARS-CoV-2. These data suggest the potential utility of T-cell targeting of conserved regions for a pan-sarbecovirus vaccine.
RESUMO
Human monoclonal antibodies (mAbs) that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer a promising approach for the prevention and treatment of coronavirus disease 2019 (COVID-19). Given suboptimal global vaccination rates, waning immunity in vaccinated individuals, and the emergence of SARS-CoV-2 variants of concern, the use of mAbs for COVID-19 prevention may increase and may need to be administered together with vaccines in certain settings. However, it is unknown whether administration of mAbs will affect the immunogenicity of SARS-CoV-2 vaccines. Using an adenovirus vector-based SARS-CoV-2 vaccine, we show that simultaneous administration of the vaccine with SARS-CoV-2 mAbs does not diminish vaccine-induced humoral or cellular immunity in cynomolgus macaques. These results suggest that SARS-CoV-2 mAbs and viral vector-based SARS-CoV-2 vaccines can be administered together without loss of potency of either product. Additional studies will be required to evaluate coadministration of mAbs with other vaccine platforms.
Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , VacinaçãoRESUMO
Spike-specific neutralizing antibodies (NAbs) are generally considered key correlates of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recently, robust vaccine prevention of severe disease with SARS-CoV-2 variants that largely escape NAb responses has been reported, suggesting a role for other immune parameters for virologic control. However, direct data demonstrating a role of CD8+ T cells in vaccine protection have not yet been reported. In this study, we show that vaccine-elicited CD8+ T cells contribute substantially to virologic control after SARS-CoV-2 challenge in rhesus macaques. We vaccinated 30 macaques with a single immunization of the adenovirus vector-based vaccine Ad26.COV2.S or sham and then challenged them with 5 × 105 median tissue culture infectious dose SARS-CoV-2 B.1.617.2 (Delta) by the intranasal and intratracheal routes. All vaccinated animals were infected by this high-dose challenge but showed rapid virologic control in nasal swabs and bronchoalveolar lavage by day 4 after challenge. However, administration of an anti-CD8α- or anti-CD8ß-depleting monoclonal antibody in vaccinated animals before SARS-CoV-2 challenge resulted in higher levels of peak and day 4 virus in both the upper and lower respiratory tracts. These data demonstrate that CD8+ T cells contribute substantially to vaccine protection against SARS-CoV-2 replication in macaques.
Assuntos
COVID-19 , Vacinas Virais , Animais , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Macaca mulatta , Ad26COVS1 , COVID-19/prevenção & controleRESUMO
Ad26.COV2.S has demonstrated durability and clinical efficacy against symptomatic COVID-19 in humans. In this study, we report the correlates of durability of humoral and cellular immune responses in 20 rhesus macaques immunized with single-shot Ad26.COV2.S and the immunogenicity of a booster shot at 8 to 10 months after the initial immunization. Ad26.COV2.S elicited durable binding and neutralizing antibodies as well as memory B cells and long-lived bone marrow plasma cells. Innate immune responses and bone marrow plasma cell responses correlated with durable antibody responses. After Ad26.COV2.S boost immunization, binding and neutralizing antibody responses against multiple SARS-CoV-2 variants increased 31- to 69-fold and 23- to 43-fold, respectively, compared with preboost concentrations. Antigen-specific B cell and T cell responses also increased substantially after the boost immunization. Boosting with a modified Ad26.COV2.S.351 vaccine expressing the SARS-CoV-2 spike protein from the beta variant led to largely comparable responses with slightly higher beta- and omicron-specific humoral immune responses. These data demonstrate that a late boost with Ad26.COV2.S or Ad26.COV2.S.351 resulted in a marked increase in humoral and cellular immune responses that were highly cross-reactive across multiple SARS-CoV-2 variants in rhesus macaques.
Assuntos
Ad26COVS1 , COVID-19 , Imunidade Humoral , Imunização Secundária , SARS-CoV-2 , Ad26COVS1/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca mulatta , Glicoproteína da Espícula de CoronavírusRESUMO
Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported frequently in vaccinated individuals with waning immunity. In particular, a cluster of over 1000 infections with the SARS-CoV-2 delta variant was identified in a predominantly fully vaccinated population in Provincetown, Massachusetts in July 2021. In this study, vaccinated individuals who tested positive for SARS-CoV-2 (n = 16) demonstrated substantially higher serum antibody responses than vaccinated individuals who tested negative for SARS-CoV-2 (n = 23), including 32-fold higher binding antibody titers and 31-fold higher neutralizing antibody titers against the SARS-CoV-2 delta variant. Vaccinated individuals who tested positive also showed higher mucosal antibody responses in nasal secretions and higher spike protein-specific CD8+ T cell responses in peripheral blood than did vaccinated individuals who tested negative. These data demonstrate that fully vaccinated individuals developed robust anamnestic antibody and T cell responses after infection with the SARS-CoV-2 delta variant. Moreover, these findings suggest that population immunity will likely increase over time by a combination of widespread vaccination and breakthrough infections.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Formação de Anticorpos , HumanosRESUMO
BACKGROUND: The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. METHODS: 30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. RESULTS: Omicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. CONCLUSIONS: BNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.
RESUMO
BACKGROUND: A cluster of over a thousand infections with the SARS-CoV-2 delta variant was identified in a predominantly fully vaccinated population in Provincetown, Massachusetts in July 2021. Immune responses in breakthrough infections with the SARS-CoV-2 delta variant remain to be defined. METHODS: Humoral and cellular immune responses were assessed in 35 vaccinated individuals who were tested for SARS-CoV-2 in the Massachusetts Department of Public Health outbreak investigation. RESULTS: Vaccinated individuals who tested positive for SARS-CoV-2 demonstrated substantially higher antibody responses than vaccinated individuals who tested negative for SARS-CoV-2, including 28-fold higher binding antibody titers and 34-fold higher neutralizing antibody titers against the SARS-CoV-2 delta variant. Vaccinated individuals who tested positive also showed 4.4-fold higher Spike-specific CD8+ T cell responses against the SARS-CoV-2 delta variant than vaccinated individuals who tested negative. CONCLUSIONS: Fully vaccinated individuals developed robust anamnestic antibody and T cell responses following infection with the SARS-CoV-2 delta variant. These data suggest important immunologic benefits of vaccination in the context of breakthrough infections.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged and may pose a threat to both the efficacy of vaccines based on the original WA1/2020 strain and the natural immunity induced by infection with earlier SARS-CoV-2 variants. We investigated how mutations in the spike protein of circulating SARS-CoV-2 variants, which have been shown to partially evade neutralizing antibodies, affect natural and vaccine-induced immunity. We adapted a Syrian hamster model of moderate to severe clinical disease for two variant strains of SARS-CoV-2: B.1.1.7 (alpha variant) and B.1.351 (beta variant). We then assessed the protective efficacy conferred by either natural immunity from WA1/2020 infection or by vaccination with a single dose of the adenovirus serotype 26 vaccine, Ad26.COV2.S. Primary infection with the WA1/2020 strain provided potent protection against weight loss and viral replication in lungs after rechallenge with WA1/2020, B.1.1.7, or B.1.351. Ad26.COV2.S induced cross-reactive binding and neutralizing antibodies that were reduced against the B.1.351 strain compared with WA1/2020 but nevertheless still provided robust protection against B.1.351 challenge, as measured by weight loss and pathology scoring in the lungs. Together, these data support hamsters as a preclinical model to study protection against emerging variants of SARS-CoV-2 conferred by prior infection or vaccination.