Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842913

RESUMO

DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, PCNA, carry out DNA synthesis during lagging strand replication, initiation of leading strand replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process involving the major single strand DNA (ssDNA)-binding protein complex, RPA, the processivity sliding clamp loader, RFC, PCNA and pol δ. During this process, the interactions of RPA, RFC and pol δ with a P/T junction all significantly overlap. A burning issue that has yet to be resolved is how these overlapping interactions are accommodated during this process. To address this, we design and utilize novel, ensemble FRET assays that continuously monitor the interactions of RPA, RFC, PCNA and pol δ with DNA as pol δ holoenzymes are assembled and initiate DNA synthesis. Results from the present study reveal that RPA remains engaged with P/T junctions throughout this process and the RPA•DNA complexes dynamically re-organize to allow successive binding of RFC and pol δ. These results have broad implications as they highlight and distinguish the functional consequences of dynamic RPA•DNA interactions in RPA-dependent DNA metabolic processes.

2.
Methods ; 224: 47-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387709

RESUMO

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA/genética , Dano ao DNA/genética , Reparo por Excisão , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/química , Raios Ultravioleta , Nucleotídeos , Ligação Proteica
3.
Methods ; 223: 95-105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301751

RESUMO

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.


Assuntos
DNA , Proteína de Replicação A , Humanos , Proteína de Replicação A/genética , DNA/genética , DNA de Cadeia Simples/genética , Aminoácidos , Bioensaio , Corantes
4.
Nucleic Acids Res ; 51(13): 6738-6753, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37264933

RESUMO

Many types of damage, including abasic sites, block replicative DNA polymerases causing replication fork uncoupling and generating ssDNA. AP-Endonuclease 1 (APE1) has been shown to cleave abasic sites in ssDNA. Importantly, APE1 cleavage of ssDNA at a replication fork has significant biological implications by generating double strand breaks that could collapse the replication fork. Despite this, the molecular basis and efficiency of APE1 processing abasic sites at replication forks remain elusive. Here, we investigate APE1 cleavage of abasic substrates that mimic APE1 interactions at stalled replication forks or gaps. We determine that APE1 has robust activity on these substrates, like dsDNA, and report rates for cleavage and product release. X-ray structures visualize the APE1 active site, highlighting an analogous mechanism is used to process ssDNA substrates as canonical APE1 activity on dsDNA. However, mutational analysis reveals R177 to be uniquely critical for the APE1 ssDNA cleavage mechanism. Additionally, we investigate the interplay between APE1 and Replication Protein A (RPA), the major ssDNA-binding protein at replication forks, revealing that APE1 can cleave an abasic site while RPA is still bound to the DNA. Together, this work provides molecular level insights into abasic ssDNA processing by APE1, including the presence of RPA.


Assuntos
Replicação do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA/química , Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Proteína de Replicação A/metabolismo
5.
Nucleic Acids Res ; 51(4): 1803-1822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651285

RESUMO

Assembly of ribosomal subunits into active ribosomal complexes is integral to protein synthesis. Release of eIF6 from the 60S ribosomal subunit primes 60S to associate with the 40S subunit and engage in translation. The dynamics of eIF6 interaction with the uL14 (RPL23) interface of 60S and its perturbation by somatic mutations acquired in Shwachman-Diamond Syndrome (SDS) is yet to be clearly understood. Here, by using a modified strategy to obtain high yields of recombinant human eIF6 we have uncovered the critical interface entailing eight key residues in the C-tail of uL14 that is essential for physical interactions between 60S and eIF6. Disruption of the complementary binding interface by conformational changes in eIF6 disease variants provide a mechanism for weakened interactions of variants with the 60S. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses uncovered dynamic configurational rearrangements in eIF6 induced by binding to uL14 and exposed an allosteric interface regulated by the C-tail of eIF6. Disrupting key residues in the eIF6-60S binding interface markedly limits proliferation of cancer cells, which highlights the significance of therapeutically targeting this interface. Establishing these key interfaces thus provide a therapeutic framework for targeting eIF6 in cancers and SDS.


Assuntos
Fatores de Iniciação em Eucariotos , Humanos , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/antagonistas & inibidores , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Síndrome de Shwachman-Diamond/terapia
6.
Proc Natl Acad Sci U S A ; 119(15): e2112376119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385349

RESUMO

Human DNA helicase B (HELB) is a poorly characterized helicase suggested to play both positive and negative regulatory roles in DNA replication and recombination. In this work, we used bulk and single-molecule approaches to characterize the biochemical activities of HELB protein with a particular focus on its interactions with Replication Protein A (RPA) and RPA­single-stranded DNA (ssDNA) filaments. HELB is a monomeric protein that binds tightly to ssDNA with a site size of ∼20 nucleotides. It couples ATP hydrolysis to translocation along ssDNA in the 5' to 3' direction accompanied by the formation of DNA loops. HELB also displays classical helicase activity, but this is very weak in the absence of an assisting force. HELB binds specifically to human RPA, which enhances its ATPase and ssDNA translocase activities but inhibits DNA unwinding. Direct observation of HELB on RPA nucleoprotein filaments shows that translocating HELB concomitantly clears RPA from ssDNA. This activity, which can allow other proteins access to ssDNA intermediates despite their shielding by RPA, may underpin the diverse roles of HELB in cellular DNA transactions.


Assuntos
DNA Helicases , DNA de Cadeia Simples , Proteínas Motores Moleculares , Proteína de Replicação A , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Humanos , Hidrólise , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Ligação Proteica , Proteína de Replicação A/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602817

RESUMO

The DNA damage checkpoint induces many cellular changes to cope with genotoxic stress. However, persistent checkpoint signaling can be detrimental to growth partly due to blockage of cell cycle resumption. Checkpoint dampening is essential to counter such harmful effects, but its mechanisms remain to be understood. Here, we show that the DNA helicase Srs2 removes a key checkpoint sensor complex, RPA, from chromatin to down-regulate checkpoint signaling in budding yeast. The Srs2 and RPA antagonism is supported by their numerous suppressive genetic interactions. Importantly, moderate reduction of RPA binding to single-strand DNA (ssDNA) rescues hypercheckpoint signaling caused by the loss of Srs2 or its helicase activity. This rescue correlates with a reduction in the accumulated RPA and the associated checkpoint kinase on chromatin in srs2 mutants. Moreover, our data suggest that Srs2 regulation of RPA is separable from its roles in recombinational repair and critically contributes to genotoxin resistance. We conclude that dampening checkpoint by Srs2-mediated RPA recycling from chromatin aids cellular survival of genotoxic stress and has potential implications in other types of DNA transactions.


Assuntos
Cromatina/genética , Dano ao DNA , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , DNA Helicases/genética , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Nucleic Acids Res ; 49(3): 1455-1469, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33444457

RESUMO

Replication protein A (RPA) binds to single-stranded DNA (ssDNA) and interacts with over three dozen enzymes and serves as a recruitment hub to coordinate most DNA metabolic processes. RPA binds ssDNA utilizing multiple oligosaccharide/oligonucleotide binding domains and based on their individual DNA binding affinities are classified as high versus low-affinity DNA-binding domains (DBDs). However, recent evidence suggests that the DNA-binding dynamics of DBDs better define their roles. Utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS), we assessed the ssDNA-driven dynamics of the individual domains of human RPA. As expected, ssDNA binding shows HDX changes in DBDs A, B, C, D and E. However, DBD-A and DBD-B are dynamic and do not show robust DNA-dependent protection. DBD-C displays the most extensive changes in HDX, suggesting a major role in stabilizing RPA on ssDNA. Slower allosteric changes transpire in the protein-protein interaction domains and linker regions, and thus do not directly interact with ssDNA. Within a dynamics-based model for RPA, we propose that DBD-A and -B act as the dynamic half and DBD-C, -D and -E function as the less-dynamic half. Thus, segments of ssDNA buried under the dynamic half are likely more readily accessible to RPA-interacting proteins.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Modelos Moleculares , Ligação Proteica , Conformação Proteica
9.
J Biol Chem ; 296: 100020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33144324

RESUMO

Heterodimeric KIF3AC is a mammalian kinesin-2 that is highly expressed in the central nervous system and associated with vesicles in neurons. KIF3AC is an intriguing member of the kinesin-2 family because the intrinsic kinetics of KIF3A and KIF3C when expressed as homodimers and analyzed in vitro are distinctively different from each other. For example, the single-molecule velocities of the engineered homodimers KIF3AA and KIF3CC are 293 and 7.5 nm/s, respectively, whereas KIF3AC has a velocity of 186 nm/s. These results led us to hypothesize that heterodimerization alters the intrinsic catalytic properties of the two heads, and an earlier computational analysis predicted that processive steps would alternate between a fast step for KIF3A followed by a slow step for KIF3C resulting in asymmetric stepping. To test this hypothesis directly, we measured the presteady-state kinetics of phosphate release for KIF3AC, KIF3AA, and KIF3CC followed by computational modeling of the KIF3AC phosphate release transients. The results reveal that KIF3A and KIF3C retain their intrinsic ATP-binding and hydrolysis kinetics. Yet within KIF3AC, KIF3A activates the rate of phosphate release for KIF3C such that the coupled steps of phosphate release and dissociation from the microtubule become more similar for KIF3A and KIF3C. These coupled steps are the rate-limiting transition for the ATPase cycle suggesting that within KIF3AC, the stepping kinetics are similar for each head during the processive run. Future work will be directed to define how these properties enable KIF3AC to achieve its physiological functions.


Assuntos
Cinesinas/química , Proteínas Associadas aos Microtúbulos/química , Modelos Químicos , Animais , Cinesinas/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Fosfatos
10.
J Biol Chem ; 297(5): 101301, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648766

RESUMO

Lamin A/C provides a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. Lamin A/C dysfunction is associated with cancer, aging, and degenerative diseases. The mechanisms whereby lamin A/C regulates genome stability remain poorly understood. We demonstrate a crucial role for lamin A/C in DNA replication. Lamin A/C binds to nascent DNA, especially during replication stress (RS), ensuring the recruitment of replication fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, function in the stabilization, remodeling, and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamin A/C depletion elicits replication fork instability (RFI) characterized by MRE11 nuclease-mediated degradation of nascent DNA, RS-induced DNA damage, and sensitivity to replication inhibitors. Importantly, unlike homologous recombination-deficient cells, RFI in lamin A/C-depleted cells is not linked to replication fork reversal. Thus, the point of entry of nucleases is not the reversed fork but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamin A/C-depleted cells is rescued by exogenous overexpression of RPA or RAD51. These data unveil involvement of structural nuclear proteins in the protection of ssDNA from nucleases during RS by promoting recruitment of RPA and RAD51 to stalled forks. Supporting this model, we show physical interaction between RPA and lamin A/C. We suggest that RS is a major source of genomic instability in laminopathies and lamin A/C-deficient tumors.


Assuntos
Replicação do DNA , Lamina Tipo A/metabolismo , Modelos Biológicos , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Animais , Células HEK293 , Humanos , Lamina Tipo A/genética , Camundongos , Camundongos Knockout , Rad51 Recombinase/genética , Proteína de Replicação A/genética
11.
J Biol Chem ; 296: 100107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33219127

RESUMO

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Trifosfato de Adenosina/química , Catálise , Proteínas Ferro-Enxofre/química , Espectrometria de Massas , Nitrogenase/química , Nitrogenase/metabolismo , Fotossíntese , Protoclorifilida/química , Protoclorifilida/metabolismo , Especificidade por Substrato
12.
Semin Cell Dev Biol ; 86: 102-111, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29588158

RESUMO

Single stranded DNA binding proteins (SSB) are essential to the cell as they stabilize transiently open single stranded DNA (ssDNA) intermediates, recruit appropriate DNA metabolism proteins, and coordinate fundamental processes such as replication, repair and recombination. Escherichia coli single stranded DNA binding protein (EcSSB) has long served as the prototype for the study of SSB function. The structure, functions, and DNA binding properties of EcSSB are well established: The protein is a stable homotetramer with each subunit possessing an N-terminal DNA binding core, a C-terminal protein-protein interaction tail, and an intervening intrinsically disordered linker (IDL). EcSSB wraps ssDNA in multiple DNA binding modes and can diffuse along DNA to remove secondary structures and remodel other protein-DNA complexes. This review provides an update on these features based on recent findings, with special emphasis on the functional and mechanistic relevance of the IDL and DNA binding modes.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Sítios de Ligação , DNA Bacteriano/química , Proteínas de Ligação a DNA/química
13.
J Biol Chem ; 295(39): 13630-13639, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32737200

RESUMO

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), catalyzed by dark-operative protochlorophyllide oxidoreductase (DPOR). DPOR is made of electron donor (BchL) and acceptor (BchNB) component proteins. BchNB is further composed of two subunits each of BchN and BchB arranged as an α2ß2 heterotetramer with two active sites for substrate reduction. Such oligomeric architectures are found in several other electron transfer (ET) complexes, but how this architecture influences activity is unclear. Here, we describe allosteric communication between the two identical active sites in Rhodobacter sphaeroides BchNB that drives sequential and asymmetric ET. Pchlide binding to one BchNB active site initiates ET from the pre-reduced [4Fe-4S] cluster of BchNB, a process similar to the deficit spending mechanism observed in the structurally related nitrogenase complex. Pchlide binding in one active site is recognized in trans by an Asp-274 from the opposing half, which is positioned to serve as the initial proton donor. A D274A variant DPOR binds to two Pchlide molecules in the BchNB complex, but only one is bound productively, stalling Pchlide reduction in both active sites. A half-active complex combining one WT and one D274A monomer also stalled after one electron was transferred in the WT half. We propose that such sequential electron transfer in oligomeric enzymes serves as a regulatory mechanism to ensure binding and recognition of the correct substrate. The findings shed light on the functional advantages imparted by the oligomeric architecture found in many electron transfer enzymes.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Rhodobacter sphaeroides/enzimologia , Transporte de Elétrons , Especificidade por Substrato
14.
J Bacteriol ; 202(3)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712282

RESUMO

Structural and spectroscopic analysis of iron-sulfur [Fe-S] cluster-containing proteins is often limited by the occupancy and yield of recombinantly produced proteins. Here we report that Escherichia coli BL21(DE3), a strain routinely used to overproduce [Fe-S] cluster-containing proteins, has a nonfunctional Suf pathway, one of two E. coli [Fe-S] cluster biogenesis pathways. We confirmed that BL21(DE3) and commercially available derivatives carry a deletion that results in an in-frame fusion of sufA and sufB genes within the sufABCDSE operon. We show that this fusion protein accumulates in cells but is inactive in [Fe-S] cluster biogenesis. Restoration of an intact Suf pathway combined with enhanced suf operon expression led to a remarkable (∼3-fold) increase in the production of the [4Fe-4S] cluster-containing BchL protein, a key component of the dark-operative protochlorophyllide oxidoreductase complex. These results show that this engineered "SufFeScient" derivative of BL21(DE3) is suitable for enhanced large-scale synthesis of an [Fe-S] cluster-containing protein.IMPORTANCE Large quantities of recombinantly overproduced [Fe-S] cluster-containing proteins are necessary for their in-depth biochemical characterization. Commercially available E. coli strain BL21(DE3) and its derivatives have a mutation that inactivates the function of one of the two native pathways (Suf pathway) responsible for cluster biogenesis. Correction of the mutation, combined with sequence changes that elevate Suf protein levels, can increase yield and cluster occupancy of [Fe-S] cluster-containing enzymes, facilitating the biochemical analysis of this fascinating group of proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Adenosina Trifosfatases/genética , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Proteínas de Transporte/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Ferro-Enxofre/genética , Óperon/genética
16.
Nucleic Acids Res ; 46(14): 7193-7205, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29931186

RESUMO

Rim1 is the mitochondrial single-stranded DNA binding protein in Saccharomyces cerevisiae and functions to coordinate replication and maintenance of mtDNA. Rim1 can form homo-tetramers in solution and this species has been assumed to be solely responsible for ssDNA binding. We solved structures of tetrameric Rim1 in two crystals forms which differ in the relative orientation of the dimers within the tetramer. In testing whether the different arrangement of the dimers was due to formation of unstable tetramers, we discovered that while Rim1 forms tetramers at high protein concentration, it dissociates into a smaller oligomeric species at low protein concentrations. A single point mutation at the dimer-dimer interface generates stable dimers and provides support for a dimer-tetramer oligomerization model. The presence of Rim1 dimers in solution becomes evident in DNA binding studies using short ssDNA substrates. However, binding of the first Rim1 dimer is followed by binding of a second dimer, whose affinity depends on the length of the ssDNA. We propose a model where binding of DNA to a dimer of Rim1 induces tetramerization, modulated by the ability of the second dimer to interact with ssDNA.


Assuntos
Proteínas de Ligação a DNA/genética , Mitocôndrias/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cristalografia por Raios X , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Acc Chem Res ; 51(9): 2179-2186, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30095253

RESUMO

Nitrogenase is a complicated two-component enzyme system that uses ATP binding and hydrolysis energy to achieve one of the most difficult chemical reactions in nature, the reduction of N2 to NH3. One component of the Mo-based nitrogenase system, Fe protein, delivers electrons one at a time to the second component, the catalytic MoFe protein. This process occurs through a series of synchronized events collectively called the "Fe protein cycle". Elucidating details of the events associated with this cycle has constituted an important challenge in understanding the nitrogenase mechanism. Electron delivery is a multistep process involving three metal clusters with intra- and interprotein events. It is proposed that the first electron transfer event is a gated intraprotein transfer of one electron from the MoFe protein P-cluster to the FeMo cofactor. Measurement of the effect of osmotic pressure on the rate of this electron transfer process revealed that it is gated by protein conformational changes. This first electron transfer is activated by binding of the Fe protein containing two bound ATP molecules. The mechanism of how this protein-protein association triggers electron transfer remains unknown. The second electron transfer event is proposed to be a rapid interprotein "backfill" with transfer of one electron from the reduced Fe protein 4Fe-4S cluster to the oxidized P-cluster. In this way, electron delivery can be viewed as a case of "deficit spending". Such a deficit-spending electron transfer process can be envisioned as a way to achieve one-direction electron flow, limiting the potential for back electron flow. Hydrolysis of two ATP molecules associated with the Fe protein occurs after the electron transfer and therefore is not used to directly drive the electron transfer. Rather, ATP hydrolysis is proposed to contribute to relaxation of the "activated" conformational state associated with the ATP form of the complex, with the free energy from ATP hydrolysis being used to pay back energy associated with component protein association and electron transfer. Release of inorganic phosphate (Pi) and protein-protein dissociation follow electron transfer and ATP hydrolysis. The rate-limiting step for the Fe protein cycle is not dissociation of the two proteins, as previously believed, but rather is release of Pi after ATP hydrolysis, which is then followed by rapid protein-protein complex dissociation. Nitrogenase is composed of two catalytic halves that do not function independently but rather exhibit anticooperative nuclear motion in which electron transfer in one-half of the complex partially inhibits electron transfer and ATP hydrolysis in the other half. Calculations indicated the existence of anticooperative interactions across the entire nitrogenase complex, suggesting a mechanism for the control of events on opposite ends of this large complex. The mechanistic necessity for this anticooperative process remains unknown. This Account presents a working model for how all of these processes work together in the nitrogenase "machine" to transduce the energy from ATP binding and hydrolysis to drive N2 reduction.


Assuntos
Molibdoferredoxina/química , Nitrogenase/química , Trifosfato de Adenosina/química , Catálise , Elétrons , Hidrólise , Ferro/química , Cinética , Oxirredução , Conformação Proteica , Termodinâmica
18.
Nucleic Acids Res ; 45(16): 9413-9426, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934470

RESUMO

An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance.


Assuntos
Recombinação Homóloga , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Azidas/química , DNA de Cadeia Simples/metabolismo , Corantes Fluorescentes/química , Microscopia de Fluorescência , Fenilalanina/análogos & derivados , Fenilalanina/química , Rad51 Recombinase/metabolismo , Proteína de Replicação A/genética , Proteínas de Saccharomyces cerevisiae/genética , Triptofano/química
19.
Proc Natl Acad Sci U S A ; 113(40): E5783-E5791, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698129

RESUMO

Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to two ammonia (NH3) molecules through the participation of its two protein components, the MoFe and Fe proteins. Electron transfer (ET) from the Fe protein to the catalytic MoFe protein involves a series of synchronized events requiring the transient association of one Fe protein with each αß half of the α2ß2 MoFe protein. This process is referred to as the Fe protein cycle and includes binding of two ATP to an Fe protein, association of an Fe protein with the MoFe protein, ET from the Fe protein to the MoFe protein, hydrolysis of the two ATP to two ADP and two Pi for each ET, Pi release, and dissociation of oxidized Fe protein-(ADP)2 from the MoFe protein. Because the MoFe protein tetramer has two separate αß active units, it participates in two distinct Fe protein cycles. Quantitative kinetic measurements of ET, ATP hydrolysis, and Pi release during the presteady-state phase of electron delivery demonstrate that the two halves of the ternary complex between the MoFe protein and two reduced Fe protein-(ATP)2 do not undergo the Fe protein cycle independently. Instead, the data are globally fit with a two-branch negative-cooperativity kinetic model in which ET in one-half of the complex partially suppresses this process in the other. A possible mechanism for communication between the two halves of the nitrogenase complex is suggested by normal-mode calculations showing correlated and anticorrelated motions between the two halves.


Assuntos
Trifosfato de Adenosina/química , Molibdoferredoxina/química , Complexos Multiproteicos/química , Oxirredutases/química , Trifosfato de Adenosina/metabolismo , Animais , Transporte de Elétrons , Hidrólise , Cinética , Molibdoferredoxina/metabolismo , Complexos Multiproteicos/metabolismo , Fixação de Nitrogênio , Oxirredutases/metabolismo , Ligação Proteica , Salmão/metabolismo
20.
Mol Cell ; 35(1): 105-15, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19595720

RESUMO

Rad51 is a DNA recombinase functioning in the repair of DNA double-strand breaks and the generation of genetic diversity by homologous recombination (HR). In the presence of ATP, Rad51 self-assembles into an extended polymer on single-stranded DNA to catalyze strand exchange. Inappropriate HR causes genomic instability, and it is normally prevented by remodeling enzymes that antagonize the activities of Rad51 nucleoprotein filaments. In yeast, the Srs2 helicase/translocase suppresses HR by clearing Rad51 polymers from single-stranded DNA. We have examined the mechanism of disassembly of Rad51 nucleoprotein filaments by Srs2 and find that a physical interaction between Rad51 and the C-terminal region of Srs2 triggers ATP hydrolysis within the Rad51 filament, causing Rad51 to dissociate from DNA. This allosteric mechanism explains the biological specialization of Srs2 as a DNA motor protein that antagonizes HR.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Carbocianinas/química , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Eletroforese em Gel de Poliacrilamida , Fluorescência , Hidrólise , Cinética , Mutação , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Rad51 Recombinase/química , Rad51 Recombinase/genética , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA