Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Eur J Appl Physiol ; 123(12): 2771-2778, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368137

RESUMO

PURPOSE: Smaller lipid droplet morphology and GLUT 4 protein expression have been associated with greater muscle oxidative capacity and glucose uptake, respectively. The main purpose of this study was to determine the effect of an acute long-duration exercise bout on skeletal muscle lipid droplet morphology, GLUT4, perilipin 3, and perilipin 5 expressions. METHODS: Twenty healthy men (age 24.0 ± 1.0 years, BMI 23.6 ± 0.4 kg/m2) were recruited for the study. The participants were subjected to an acute bout of exercise on a cycle ergometer at 50% VO2max until they reached a total energy expenditure of 650 kcal. The study was conducted after an overnight fast. Vastus lateralis muscle biopsies were obtained before and immediately after exercise for immunohistochemical analysis to determine lipid, perilipin 3, perilipin 5, and GLUT4 protein contents while GLUT 4 mRNA was quantified using RT-qPCR. RESULTS: Lipid droplet size decreased whereas total intramyocellular lipid content tended to reduce (p = 0.07) after an acute bout of endurance exercise. The density of smaller lipid droplets in the peripheral sarcoplasmic region significantly increased (0.584 ± 0.04 to 0.638 ± 0.08 AU; p = 0.01) while larger lipid droplets significantly decreased (p < 0.05). GLUT4 mRNA tended to increase (p = 0.05). There were no significant changes in GLUT 4, perilipin 3, and perilipin 5 protein levels. CONCLUSION: The study demonstrates that exercise may impact metabolism by enhancing the quantity of smaller lipid droplets over larger lipid droplets.


Assuntos
Gotículas Lipídicas , Perilipina-5 , Masculino , Humanos , Adulto Jovem , Adulto , Perilipina-1/metabolismo , Gotículas Lipídicas/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Perilipina-5/metabolismo , Perilipina-3/metabolismo , Músculo Esquelético/fisiologia , Lipídeos , RNA Mensageiro/metabolismo , Metabolismo dos Lipídeos/fisiologia
2.
Front Endocrinol (Lausanne) ; 14: 1222532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583429

RESUMO

Background: Physical inactivity increases the risk for metabolic diseases such as obesity and type 2 diabetes. Neuromuscular electrical stimulation (NMES) is an effective method to induce muscle contraction, particularly for populations with physical impairments and/or metabolic diseases. However, its effectiveness to improve glycemic control is unclear. This review aimed to determine the effectiveness of NMES on glycemic control. Methods: Electronic search consisted of MEDLINE (PubMed), EMBASE, Cochrane Library, Google Scholar, and Web of Science to identify studies that investigated the effects of NMES on glycemic control for this systematic review. The meta-analysis consists of the studies designed as randomized controlled trials. Effect sizes were calculated as the standardized mean difference (SMD) and meta-analysis was conducted using a random-effects model. Results: Thirty-five studies met the inclusion criteria for systematic review and of those, nine qualified for the meta-analysis. Existing evidence suggested that NMES effectively improves glycemic control predominantly in middle-aged and elderly population with type 2 diabetes, obesity, and spinal cord injury. The meta-analysis is comprised of 180 participants and reported that NMES intervention lowered fasting blood glucose (SMD: 0.48; 95% CI: 0.17 to 0.78; p=0.002; I²=0%). Additional analysis using the primary measures reported by each study to indicate glycemic control (i.e., OGTT, HOMA-IR, and fasting glucose) also confirmed a significant effect of NMES on improving glycemic control (SMD: 0.41; 95% CI, 0.09 to 0.72; p=0.01; I²=11%). NMES protocol varied across studies and requires standardization. Conclusion: NMES could be considered as a therapeutic strategy to improve glycemic control in populations with physical impairments and/or metabolic disorders. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020192491.


Assuntos
Diabetes Mellitus Tipo 2 , Terapia por Estimulação Elétrica , Idoso , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/terapia , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Serviços de Saúde , Obesidade
3.
Clin Transl Med ; 12(12): e1146, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536477

RESUMO

Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.


Assuntos
Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Glicerofosfolipídeos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Camundongos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Genes de Troca , Glicerofosfolipídeos/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Proteínas de Ciclo Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA