Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(5): 1039-1044, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339503

RESUMO

The long-held view that gamma delta (γδ) T cells in mice and humans are fundamentally dissimilar, as are γδ cells in blood and peripheral tissues, has been challenged by emerging evidence of the cells' regulation by butyrophilin (BTN) and butyrophilin-like (BTNL) molecules. Thus, murine Btnl1 and the related gene, Skint1, mediate T cell receptor (TCR)-dependent selection of murine intraepithelial γδ T cell repertoires in gut and skin, respectively; BTNL3 and BTNL8 are TCR-dependent regulators of human gut γδ cells; and BTN3A1 is essential for TCR-dependent activation of human peripheral blood Vγ9Vδ2+ T cells. However, some observations concerning BTN/Btnl molecules continue to question the extent of mechanistic conservation. In particular, murine and human gut γδ cell regulation depends on pairings of Btnl1 and Btnl6 and BTNL3 and BTNL8, respectively, whereas blood γδ cells are reported to be regulated by BTN3A1 independent of other BTNs. Addressing this paradox, we show that BTN3A2 regulates the subcellular localization of BTN3A1, including functionally important associations with the endoplasmic reticulum (ER), and is specifically required for optimal BTN3A1-mediated activation of Vγ9Vδ2+ T cells. Evidence that BTNL3/BTNL8 and Btnl1/Btnl6 likewise associate with the ER reinforces the prospect of broadly conserved mechanisms underpinning the selection and activation of γδ cells in mice and humans, and in blood and extralymphoid sites.


Assuntos
Butirofilinas/imunologia , Butirofilinas/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Motivos de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/imunologia , Antígenos CD/metabolismo , Butirofilinas/química , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Ativação Linfocitária , Camundongos , Multimerização Proteica
2.
PLoS Pathog ; 14(11): e1007408, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496303

RESUMO

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced post-entry inhibitor of human immunodeficiency virus type-1 (HIV-1) infection. While the precise mechanism of viral inhibition remains unclear, MX2 is localized to the nuclear envelope, and blocks the nuclear import of viral cDNAs. The amino-terminus of MX2 (N-MX2) is essential for anti-viral function, and mutation of a triple arginine motif at residues 11 to 13 abrogates anti-HIV-1 activity. In this study, we sought to investigate the role of N-MX2 in anti-viral activity by identifying functionally relevant host-encoded interaction partners through yeast-two-hybrid screening. Remarkably, five out of seven primary candidate interactors were nucleoporins or nucleoporin-like proteins, though none of these candidates were identified when screening with a mutant RRR11-13A N-MX2 fragment. Interactions were confirmed by co-immunoprecipitation, and RNA silencing experiments in cell lines and primary CD4+ T cells demonstrated that multiple components of the nuclear pore complex and nuclear import machinery can impact MX2 anti-viral activity. In particular, the phenylalanine-glycine (FG) repeat containing cytoplasmic filament nucleoporin NUP214, and transport receptor transportin-1 (TNPO1) were consistently required for full MX2, and interferon-mediated, anti-viral function. Both proteins were shown to interact with the triple arginine motif, and confocal fluorescence microscopy revealed that their simultaneous depletion resulted in diminished MX2 accumulation at the nuclear envelope. We therefore propose a model whereby multiple components of the nuclear import machinery and nuclear pore complex help position MX2 at the nuclear envelope to promote MX2-mediated restriction of HIV-1.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteínas de Resistência a Myxovirus/metabolismo , Transporte Ativo do Núcleo Celular , Antivirais/metabolismo , Células HEK293 , Infecções por HIV/virologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Proteínas de Resistência a Myxovirus/genética , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Replicação Viral , beta Carioferinas/metabolismo
3.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747499

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1-/- and SUN2-/- cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection.IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis.


Assuntos
Proteínas do Capsídeo/genética , Infecções por HIV/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , DNA Viral/genética , Inativação Gênica , Células HEK293 , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Poro Nuclear/metabolismo , Proteínas Nucleares/genética
4.
J Virol ; 90(1): 22-32, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446602

RESUMO

UNLABELLED: Human myxovirus resistance 2 (MX2/MXB) is an interferon-stimulated gene (ISG) and was recently identified as a late postentry suppressor of human immunodeficiency virus type 1 (HIV-1) infection, inhibiting the nuclear accumulation of viral cDNAs. Although the HIV-1 capsid (CA) protein is believed to be the viral determinant of MX2-mediated inhibition, the precise mechanism of antiviral action remains unclear. The MX family of dynamin-like GTPases also includes MX1/MXA, a well-studied inhibitor of a range of RNA and DNA viruses, including influenza A virus (FLUAV) and hepatitis B virus but not retroviruses. MX1 and MX2 are closely related and share similar domain architectures and structures. However, MX2 possesses an extended N terminus that is essential for antiviral function and confers anti-HIV-1 activity on MX1 [MX1(NMX2)]. Higher-order oligomerization is required for the antiviral activity of MX1 against FLUAV, with current models proposing that MX1 forms ring structures that constrict around viral nucleoprotein complexes. Here, we performed structure-function studies to investigate the requirements for oligomerization of both MX2 and chimeric MX1(NMX2) for the inhibition of HIV-1 infection. The oligomerization state of mutated proteins with amino acid substitutions at multiple putative oligomerization interfaces was assessed using a combination of covalent cross-linking and coimmunoprecipitation. We show that while monomeric MX2 and MX1(NMX2) mutants are not antiviral, higher-order oligomerization does not appear to be required for full antiviral activity of either protein. We propose that lower-order oligomerization of MX2 is sufficient for the effective inhibition of HIV-1. IMPORTANCE: Interferon plays an important role in the control of virus replication during acute infection in vivo. Recently, cultured cell experiments identified human MX2 as a key effector in the interferon-mediated postentry block to HIV-1 infection. MX2 is a member of a family of large dynamin-like GTPases that includes MX1/MXA, a closely related interferon-inducible inhibitor of several viruses, including FLUAV, but not HIV-1. MX GTPases form higher-order oligomeric structures, and the oligomerization of MX1 is required for inhibitory activity against many of its viral targets. Through structure-function studies, we report that monomeric mutants of MX2 do not inhibit HIV-1. However, in contrast to MX1, oligomerization beyond dimer assembly does not seem to be required for the antiviral activity of MX2, implying that fundamental differences exist between the antiviral mechanisms employed by these closely related proteins.


Assuntos
HIV-1/imunologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Proteínas de Resistência a Myxovirus/metabolismo , Multimerização Proteica , Replicação Viral , Substituição de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Resistência a Myxovirus/genética , Conformação Proteica
5.
J Virol ; 90(16): 7469-7480, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279606

RESUMO

UNLABELLED: Type I interferons (IFNs), including IFN-α, upregulate an array of IFN-stimulated genes (ISGs) and potently suppress Human immunodeficiency virus type 1 (HIV-1) infectivity in CD4(+) T cells, monocyte-derived macrophages, and dendritic cells. Recently, we and others identified ISG myxovirus resistance 2 (MX2) as an inhibitor of HIV-1 nuclear entry. However, additional antiviral blocks exist upstream of nuclear import, but the ISGs that suppress infection, e.g., prior to (or during) reverse transcription, remain to be defined. We show here that the HIV-1 CA mutations N74D and A105T, both of which allow escape from inhibition by MX2 and the truncated version of cleavage and polyadenylation specific factor 6 (CPSF6), as well as the cyclophilin A (CypA)-binding loop mutation P90A, all increase sensitivity to IFN-α-mediated inhibition. Using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology, we demonstrate that the IFN-α hypersensitivity of these mutants in THP-1 cells is independent of MX2 or CPSF6. As expected, CypA depletion had no additional effect on the behavior of the P90A mutant but modestly increased the IFN-α sensitivity of wild-type virus. Interestingly, the infectivity of wild-type or P90A virus could be rescued from the MX2-independent IFN-α-induced blocks in THP-1 cells by treatment with cyclosporine (Cs) or its nonimmunosuppressive analogue SDZ-NIM811, indicating that Cs-sensitive host cell cyclophilins other than CypA contribute to the activity of IFN-α-induced blocks. We propose that cellular interactions with incoming HIV-1 capsids help shield the virus from recognition by antiviral effector mechanisms. Thus, the CA protein is a fulcrum for the dynamic interplay between cell-encoded functions that inhibit or promote HIV-1 infection. IMPORTANCE: HIV-1 is the causative agent of AIDS. During acute HIV-1 infection, numerous proinflammatory cytokines are produced, including type I interferons (IFNs). IFNs can limit HIV-1 replication by inducing the expression of a set of antiviral genes that inhibit HIV-1 at multiple steps in its life cycle, including the postentry steps of reverse transcription and nuclear import. This is observed in cultured cell systems, as well as in clinical trials in HIV-1-infected patients. The identities of the cellular antiviral factors, their viral targets, and the underpinning mechanisms are largely unknown. We show here that the HIV-1 Capsid protein plays a central role in protecting the virus from IFN-induced inhibitors that block early postentry steps of infection. We further show that host cell cyclophilins play an important role in regulating these processes, thus highlighting the complex interplay between antiviral effector mechanisms and viral survival.


Assuntos
Antivirais/metabolismo , Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Linhagem Celular , Proteína do Núcleo p24 do HIV/genética , Humanos , Imunidade Inata , Interferon-alfa/imunologia , Monócitos/virologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
6.
PLoS Pathog ; 11(1): e1004609, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25590131

RESUMO

The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G) and APOBEC3F (A3F), act as potent human immunodeficiency virus type-1 (HIV-1) restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC) region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA) and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC) fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.


Assuntos
Citosina Desaminase/metabolismo , HIV-1/fisiologia , Pequeno RNA não Traduzido/metabolismo , Montagem de Vírus/fisiologia , Desaminases APOBEC , Desaminase APOBEC-3G , Autoantígenos/metabolismo , Células Cultivadas , Citidina Desaminase/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica , RNA Citoplasmático Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
7.
Retrovirology ; 11: 29, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24712655

RESUMO

BACKGROUND: The deoxynucleotide-triphosphate (dNTP) hydrolase sterile alpha motif domain and HD domain 1 (SAMHD1) is a nuclear protein that inhibits HIV-1 infection in myeloid cells as well as quiescent CD4 T-cells, by decreasing the intracellular dNTP concentration below a level that is required for efficient reverse transcription. The Vpx proteins of the SIVSMM/HIV-2 lineage of lentiviruses bind SAMHD1 and recruit an ubiquitin ligase, leading to polyubiquitination and proteasomal degradation. RESULTS: Here, we have investigated the importance of nuclear localization for SAMHD1's antiviral function as well as its sensitivity to the Vpx protein of SIVMAC. Using GST pull down assays, as well as RNA silencing approaches, we show that SAMHD1 preferentially uses karyopherin α2 (KPNA2) and a classical N-terminal nuclear localization signal (14KRPR17) to enter the nucleus. Reduction of karyopherin ß1 (KPNB1) or KPNA2 by RNAi also led to cytoplasmic re-distribution of SAMHD1. Using primary human monocyte-derived macrophages (MDM), a cell type in which SAMHD1 is naturally expressed to high levels, we demonstrate that nuclear localization is not required for its antiviral activity. Cytoplasmic SAMHD1 still binds to VpxMAC, is efficiently polyubiquitinated, but is not degraded. We also find that VpxMAC-induced SAMHD1 degradation was partially reversed by ubiquitin carrying the K48R or K11R substitution mutations, suggesting involvement of K48 and K11 linkages in SAMHD1 polyubiquitination. Using ubiquitin K-R mutants also revealed differences in the ubiquitin linkages between wild type and cytoplasmic forms of SAMHD1, suggesting a potential association with the resistance of cytoplasmic SAMHD1 to VpxMAC induced degradation. CONCLUSIONS: Our work extends published observations on SAMHD1 nuclear localization to a natural cell type for HIV-1 infection, identifies KPNA2/KPNB1 as cellular proteins important for SAMHD1 nuclear import, and indicates that components of the nuclear proteasomal degradation machinery are required for SAMHD1 degradation.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Transporte Ativo do Núcleo Celular , Células Cultivadas , Humanos , Leucócitos Mononucleares/virologia , Proteólise , Proteína 1 com Domínio SAM e Domínio HD , Ubiquitinação
8.
J Virol ; 83(7): 3094-103, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19176629

RESUMO

Lentiviral vectors (lentivectors) are effective for stimulation of cell-mediated and humoral immunity following subcutaneous and intramuscular immunization. However, lentivector genome integration carries a risk of perturbation of host gene expression. Here, we demonstrate that lentivectors with multiple mutations that prevent integration are also effective immunogens. First, systemic CD8(+) T-cell responses to the model antigen ovalbumin were detected following subcutaneous injection of nonintegrating lentivectors. Transfer of transgenic OT1 T cells demonstrated that antigen presentation persisted for at least 30 days. Furthermore, an enhanced CD8(+) T-cell response, peaking at 7 days, was stimulated by coexpression of p38 MAP kinase or an NF-kappaB activator from the same vector. Second, we demonstrated systemic CD8(+) T-cell and antibody responses to the secreted hepatitis B virus (HBV) surface antigen expressed from a nonintegrating lentivector injected intramuscularly. The induction, specificity, and kinetics of antibody production closely mimicked those of natural HBV infection. In this case, both the vector genome and the immune response were maintained for at least 2 months. Together, our data indicate that nonintegrating lentivectors can be employed to generate effective vaccines.


Assuntos
Anticorpos Antineoplásicos/sangue , Anticorpos Antivirais/sangue , Vacinas Anticâncer/imunologia , Vetores Genéticos , Vacinas contra Hepatite B/imunologia , Lentivirus/genética , Linfócitos T/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neoplasias/patologia , Neoplasias/prevenção & controle , Integração Viral
9.
Nat Microbiol ; 4(6): 933-940, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886358

RESUMO

Type 1 interferon suppresses viral replication by upregulating the expression of interferon-stimulated genes with diverse antiviral properties1. The replication of human immunodeficiency virus type 1 (HIV-1) is naturally inhibited by interferon, with the steps between viral entry and chromosomal integration of viral DNA being notably susceptible2-5. The interferon-stimulated gene myxovirus resistance 2 has been defined as an effective postentry inhibitor of HIV-1, but is only partially responsible for interferon's suppressive effect6-8. Using small interfering RNA-based library screening in interferon-α-treated cells, we sought to characterize further interferon-stimulated genes that target the pre-integration phases of HIV-1 infection, and identified human tripartite-containing motif 5α (TRIM5α) as a potent anti-HIV-1 restriction factor. Human TRIM5α, in contrast with many nonhuman orthologues, has not generally been ascribed substantial HIV-1 inhibitory function, a finding attributed to ineffective recognition of cytoplasmic viral capsids by TRIM5α2,9,10. Here, we demonstrate that interferon-α-mediated stimulation of the immunoproteasome, a proteasome isoform mainly present in immune cells and distinguished from the constitutive proteasome by virtue of its different catalytic ß-subunits, as well as the proteasome activator 28 regulatory complex11-13, and the associated accelerated turnover of TRIM5α underpin the reprogramming of human TRIM5α for effective capsid-dependent inhibition of HIV-1 DNA synthesis and infection. These observations identify a mechanism for regulating human TRIM5α antiviral function in human cells and rationalize how TRIM5α participates in the immune control of HIV-1 infection.


Assuntos
Antivirais/antagonistas & inibidores , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Restrição Antivirais , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas de Transporte/genética , Linhagem Celular , Inativação Gênica , Células HEK293 , Humanos , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Replicação Viral
10.
Cell Rep ; 29(7): 1923-1933.e3, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722207

RESUMO

Myxovirus resistance 2 (MX2/MXB) is an interferon (IFN)-induced HIV-1 restriction factor that inhibits viral nuclear DNA accumulation. The amino-terminal domain of MX2 binds the viral capsid and is essential for inhibition. Using in vitro assembled Capsid-Nucleocapsid (CANC) complexes as a surrogate for the HIV-1 capsid lattice, we reveal that the GTPase (G) domain of MX2 contains a second, independent capsid-binding site. The importance of this interaction was addressed in competition assays using the naturally occurring non-antiviral short isoform of MX2 that lacks the amino-terminal 25 amino acids. Specifically, these experiments show that the G domain enhances MX2 function, and the foreshortened isoform acts as a functional suppressor of the full-length protein in a G-domain-dependent manner. The interaction of MX2 with its HIV-1 capsid substrate is therefore multi-faceted: there are dual points of contact that, together with protein oligomerization, contribute to the complexity of MX2 regulation.


Assuntos
Capsídeo/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , Infecções por HIV/genética , HIV-1/genética , Células HeLa , Humanos , Proteínas de Resistência a Myxovirus/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
11.
Nat Microbiol ; 4(3): 539, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30670794

RESUMO

In the version of Supplementary Fig. 5a originally published with this Letter, the authors mistakenly duplicated images of LAMP1 staining in place of CD63 staining; this has now been amended to the correct version shown below.

12.
Nat Microbiol ; 3(12): 1369-1376, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30478388

RESUMO

Interferons (IFNs) mediate cellular defence against viral pathogens by upregulation of IFN-stimulated genes whose products interact with viral components or alter cellular physiology to suppress viral replication1-3. Among the IFN-stimulated genes that can inhibit influenza A virus (IAV)4 are the myxovirus resistance 1 GTPase5 and IFN-induced transmembrane protein 3 (refs 6,7). Here, we use ectopic expression and gene knockout to demonstrate that the IFN-inducible 219-amino acid short isoform of human nuclear receptor coactivator 7 (NCOA7) is an inhibitor of IAV as well as other viruses that enter the cell by endocytosis, including hepatitis C virus. NCOA7 interacts with the vacuolar H+-ATPase (V-ATPase) and its expression promotes cytoplasmic vesicle acidification, lysosomal protease activity and the degradation of endocytosed antigen. Step-wise dissection of the IAV entry pathway demonstrates that NCOA7 inhibits fusion of the viral and endosomal membranes and subsequent nuclear translocation of viral ribonucleoproteins. Therefore, NCOA7 provides a mechanism for immune regulation of endolysosomal physiology that not only suppresses viral entry into the cytosol from this compartment but may also regulate other V-ATPase-associated cellular processes, such as physiological adjustments to nutritional status, or the maturation and function of antigen-presenting cells.


Assuntos
Endossomos/efeitos dos fármacos , Interferons/metabolismo , Coativadores de Receptor Nuclear/antagonistas & inibidores , Coativadores de Receptor Nuclear/metabolismo , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/fisiologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/imunologia , Isoformas de Proteínas , Proteólise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , ATPases Vacuolares Próton-Translocadoras
13.
Nat Microbiol ; 3(2): 220-233, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29158605

RESUMO

Following cell entry, the RNA genome of HIV-1 is reverse transcribed into double-stranded DNA that ultimately integrates into the host-cell genome to establish the provirus. These early phases of infection are notably vulnerable to suppression by a collection of cellular antiviral effectors, called restriction or resistance factors. The host antiviral protein APOBEC3G (A3G) antagonizes the early steps of HIV-1 infection through the combined effects of inhibiting viral cDNA production and cytidine-to-uridine-driven hypermutation of this cDNA. In seeking to address the underlying molecular mechanism for inhibited cDNA synthesis, we developed a deep sequencing strategy to characterize nascent reverse transcription products and their precise 3'-termini in HIV-1 infected T cells. Our results demonstrate site- and sequence-independent interference with reverse transcription, which requires the specific interaction of A3G with reverse transcriptase itself. This approach also established, contrary to current ideas, that cellular uracil base excision repair (UBER) enzymes target and cleave A3G-edited uridine-containing viral cDNA. Together, these findings yield further insights into the regulatory interplay between reverse transcriptase, A3G and cellular DNA repair machinery, and identify the suppression of HIV-1 reverse transcriptase by a directly interacting host protein as a new cell-mediated antiviral mechanism.


Assuntos
Desaminase APOBEC-3G/farmacologia , Antivirais/farmacologia , Transcriptase Reversa do HIV/efeitos dos fármacos , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Desaminase APOBEC-3G/química , Antivirais/química , Reparo do DNA , DNA Complementar/metabolismo , DNA Viral/genética , Células HEK293 , Infecções por HIV , HIV-1/patogenicidade , Humanos , Domínios e Motivos de Interação entre Proteínas , Transcrição Reversa , Linfócitos T/virologia , Replicação Viral/efeitos dos fármacos
14.
Virology ; 482: 72-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25827531

RESUMO

Heterosexual HIV-1 transmission has been identified as a genetic bottleneck and a single transmitted/founder (T/F) variant with reduced sensitivity to type I interferon initiates productive infection in most cases. We hypothesized that particularly active accessory protein(s) may confer T/F viruses with a selective advantage in establishing HIV infection. Thus, we tested vpu, vif and nef alleles from six T/F and six chronic (CC) viruses in assays for 9 immune evasion activities involving the counteraction of interferon-stimulated genes and modulation of ligands known to activate innate immune cells. All functions were highly conserved with no significant differences between T/F and CC viruses, suggesting that these accessory protein functions are important throughout the course of infection.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Evasão da Resposta Imune , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Feminino , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Humanos , Masculino , Replicação Viral
15.
Mol Ther ; 15(11): 1947-54, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17700544

RESUMO

Human immunodeficiency virus (HIV)-based lentiviral vectors (LVs) hold immense promise for gene delivery applications because of their relatively large packaging capacity and their ability to infect a range of cell types. The genome of HIV non-specifically integrates into the host genome, and this promotes efficient, stable transgene expression in dividing cells. However, integration can also be problematic because of variations in gene expression among cells, possible gene silencing and, most importantly, insertional mutagenesis which can lead to undesirable effects such as malignant transformation. In order to alleviate these problems, we have developed a range of non-integrating LVs (NILVs) by introducing point mutations into the catalytic site, chromosome binding site, and viral DNA binding site of the viral integrase (IN). In addition, we have mutated the IN attachment (att) sites within the HIV long terminal repeats (LTRs). All of the vectors produced show efficient reverse transcription and transgene expression in dividing cells and prolonged expression in non-dividing myotubes. Finally, we show that NILV can be used for achieving highly effective gene transfer and expression in muscle in vivo.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Músculos/metabolismo , Transdução Genética/métodos , Animais , Linhagem Celular , DNA Viral/genética , Expressão Gênica , Genoma Viral/genética , Humanos , Integrases/química , Integrases/genética , Integrases/metabolismo , Camundongos , Mutação/genética , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA