Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 293(47): 18123-18137, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30275012

RESUMO

Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-α-Rha-3-α-Rha-3-α-Rha-3-ß-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-ß-Rha-4-α-Glc-3-ß-Rha-4-(α-Rib-3-)ß-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer.


Assuntos
Clostridioides difficile/metabolismo , Glicoproteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Glicosilação , Espectrometria de Massas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Peso Molecular , Polissacarídeos/química , Conformação Proteica , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
2.
Infect Immun ; 79(3): 1067-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21189318

RESUMO

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) are important human pathogens that rely on translocation of type III secretion system (T3SS) effectors for subversion of signal transduction pathways and colonization of the mammalian gut mucosa. While a core set of effectors is conserved between EPEC and EHEC strains, a growing number of accessory effectors that were found at various frequencies in clinical and environmental isolates have been recently identified. Recent genome projects identified espV as a pseudogene in EHEC but a putative functional gene in EPEC strains E110019 and E22 and the closely related mouse pathogen Citrobacter rodentium. The aim of this study was to determine the distribution of espV among clinical EPEC and EHEC strains and to investigate its function and role in pathogenesis. espV was found in 16% of the tested strains. While deletion of espV from C. rodentium did not affect colonization dynamics or fitness in mixed infections, expression of EspV in mammalian cells led to drastic morphological alterations, which were characterized by nuclear condensation, cell rounding, and formation of dendrite-like projections. Expression of EspV in yeast resulted in a dramatic increase in cell size and irreversible growth arrest. Although the role of EspV in infection and its target host cell protein(s) require further investigation, the data point to a novel mechanism by which the T3SS subverts cell signaling.


Assuntos
Sistemas de Secreção Bacterianos/genética , Citrobacter rodentium/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Células Eucarióticas/microbiologia , Imunofluorescência , Genes Bacterianos/genética , Células HeLa , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Virulência
3.
PLoS Pathog ; 5(12): e1000683, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011125

RESUMO

Enteropathogenic Escherichia coli (EPEC) strains are defined as extracellular pathogens which nucleate actin rich pedestal-like membrane extensions on intestinal enterocytes to which they intimately adhere. EPEC infection is mediated by type III secretion system effectors, which modulate host cell signaling. Recently we have shown that the WxxxE effector EspT activates Rac1 and Cdc42 leading to formation of membrane ruffles and lamellipodia. Here we report that EspT-induced membrane ruffles facilitate EPEC invasion into non-phagocytic cells in a process involving Rac1 and Wave2. Internalized EPEC resides within a vacuole and Tir is localized to the vacuolar membrane, resulting in actin polymerization and formation of intracellular pedestals. To the best of our knowledge this is the first time a pathogen has been shown to induce formation of actin comets across a vacuole membrane. Moreover, our data breaks the dogma of EPEC as an extracellular pathogen and defines a new category of invasive EPEC.


Assuntos
Actinas/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transdução de Sinais/fisiologia , Células 3T3 , Animais , Células CACO-2 , Membrana Celular , Escherichia coli Enteropatogênica/metabolismo , Imunofluorescência , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pseudópodes/metabolismo , Transfecção , Vacúolos/microbiologia , Virulência , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Cell Microbiol ; 12(5): 654-64, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20039879

RESUMO

We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide-free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H-Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Salmonella typhimurium/enzimologia , Proteína rhoA de Ligação ao GTP/metabolismo , Substituição de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína
5.
Infect Immun ; 78(4): 1417-25, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20123714

RESUMO

Subversion of Rho family small GTPases, which control actin dynamics, is a common infection strategy used by bacterial pathogens. In particular, Salmonella enterica serovar Typhimurium, Shigella flexneri, enteropathogenic Escherichia coli (EPEC), and enterohemorrhagic Escherichia coli (EHEC) translocate type III secretion system (T3SS) effector proteins to modulate the Rho GTPases RhoA, Cdc42, and Rac1, which trigger formation of stress fibers, filopodia, and lamellipodia/ruffles, respectively. The Salmonella effector SopE is a guanine nucleotide exchange factor (GEF) that activates Rac1 and Cdc42, which induce "the trigger mechanism of cell entry." Based on a conserved Trp-xxx-Glu motif, the T3SS effector proteins IpgB1 and IpgB2 of Shigella, SifA and SifB of Salmonella, and Map of EPEC and EHEC were grouped together into a WxxxE family; recent studies identified the T3SS EPEC and EHEC effectors EspM and EspT as new family members. Recent structural and functional studies have shown that representatives of the WxxxE effectors share with SopE a 3-D fold and GEF activity. In this minireview, we summarize contemporary findings related to the SopE and WxxxE GEFs in the context of their role in subverting general host cell signaling pathways and infection.


Assuntos
Proteínas de Bactérias/metabolismo , Enterobacteriaceae/patogenicidade , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Virulência/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Cell Microbiol ; 11(2): 217-29, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19016787

RESUMO

Subversion of the eukaryotic cell cytoskeleton is a virulence strategy employed by many bacterial pathogens. Due to the pivotal role of Rho GTPases in actin dynamics they are common targets of bacterial effector proteins and toxins. IpgB1, IpgB2 (Shigella), SifA, SifB (Salmonella) and Map and EspM (attaching and effacing pathogens) constitute a family of type III secretion system effectors that subverts small GTPase signalling pathways. In this study we identified and characterized EspT from Citrobacter rodentium that triggers formation of lamellipodia on Swiss 3T3 and membrane ruffles on HeLa cells, which are reminiscent of the membrane ruffles induced by IpgB1. Ectopic expression of EspT and IpgB1, but not EspM, resulted in a mitochondrial localization. Using dominant negative constructs we found that EspT-induced actin remodelling is dependent on GTP-bound Rac-1 and Cdc42 but not ELMO or Dock180, which are hijacked by IpgB1 in order to form a Rac-1 specific guanine nucleotide exchange factor. Using pull-down assays with the Rac-1 and Cdc42 binding domains of Pak and WASP we demonstrate that EspT is capable of activating both Rac-1 and Cdc42. These results suggest that EspT modulates the host cell cytoskeleton through coactivation of Rac-1 and Cdc42 by a distinct mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Citrobacter rodentium/fisiologia , Pseudópodes/microbiologia , Fatores de Virulência/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
7.
Cell Microbiol ; 11(2): 309-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19046338

RESUMO

Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and the adaptor proteins Nck. In this paper we show that Map triggers filopodia formation by activating Cdc42; expression of dominant-negative Cdc42 or knock-down of Cdc42 by siRNA impaired filopodia formation. In addition, Map binds PDZ1 of NHERF1. We show that Map-NHERF1 interaction is needed for filopodia stabilization in a process involving ezrin and the RhoA/ROCK cascade; expression of dominant-negative ezrin and RhoA or siRNA knock-down of RhoA lead to rapid elimination of filopodia. Moreover, we show that formation of the Tir-Nck signalling complex leads to filopodia withdrawal. Recovery from the filopodial signals requires phosphorylation of a Tir tyrosine (Y474) residue and actin polymerization pathway as both infection of cells with EPEC expressing TirY474S or infection of Nck knockout cells with wild-type EPEC resulted in persistence of filopodia. These results show that EPEC effectors modulate actin dynamics by temporal subverting the Rho GTPases and other actin polymerization pathways for the benefit of the adherent pathogen.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Pseudópodes/fisiologia , Fatores de Virulência/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Modelos Biológicos , Mutação de Sentido Incorreto , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Cell Microbiol ; 10(7): 1429-41, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18331467

RESUMO

Rho GTPases are common targets of bacterial toxins and type III secretion system effectors. IpgB1 and IpgB2 of Shigella and Map of enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli were recently grouped together on the basis that they share a conserved WxxxE motif. In this study, we characterized six WxxxE effectors from attaching and effacing pathogens: TrcA and EspM1 of EPEC strain B171, EspM1 and EspM2 of EHEC strain Sakai and EspM2 and EspM3 of Citrobacter rodentium. We show that EspM2 triggers formation of global parallel stress fibres, TrcA and EspM1 induce formation of localized parallel stress fibres and EspM3 triggers formation of localized radial stress fibres. Using EspM2 and EspM3 as model effectors, we report that while substituting the conserved Trp with Ala abolished activity, conservative Trp to Tyr or Glu to Asp substitutions did not affect stress-fibre formation. We show, using dominant negative constructs and chemical inhibitors, that the activity of EspM2 and EspM3 is RhoA and ROCK-dependent. Using Rhotekin pull-downs, we have shown that EspM2 and EspM3 activate RhoA; translocation of EspM2 and EspM3 triggered phosphorylation of cofilin. These results suggest that the EspM effectors modulate actin dynamics by activating the RhoA signalling pathway.


Assuntos
Actinas/metabolismo , Bactérias/patogenicidade , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Fibras de Estresse/metabolismo , Células 3T3 , Fatores de Despolimerização de Actina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Bactérias/metabolismo , Proteínas de Bactérias/genética , Ativação Enzimática , Proteínas de Ligação ao GTP , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
9.
J Med Microbiol ; 58(Pt 8): 988-995, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19528152

RESUMO

Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) translocate dozens of type III secretion system effectors, including the WxxxE effectors Map, EspM and EspT that activate Rho GTPases. While map, which is carried on the LEE pathogenicity island, is absolutely conserved among EPEC and EHEC strains, the prevalence of espM and espT is not known. Here we report the results of a large screen aimed at determining the prevalence of espM and espT among clinical EPEC and EHEC isolates. The results suggest that espM, detected in 51 % of the tested strains, is more commonly found in EPEC and EHEC serogroups that are linked to severe human infections. In contrast, espT was absent from all the EHEC isolates and was found in only 1.8 % of the tested EPEC strains. Further characterization of the virulence gene repertoire of the espT-positive strains led to the identification of a new zeta2 intimin variant. All the espT-positive strains but two contained the tccP gene. espT was first found in Citrobacter rodentium and later in silico in EPEC E110019, which is of particular interest as this strain was responsible for a particularly severe diarrhoeal outbreak in Finland in 1987 that affected 650 individuals in a school complex and an additional 137 associated household members. Comparing the protein sequences of EspT to that of E110019 showed a high level of conservation, with only three strains encoding EspT that differed in 6 amino acids. At present, it is not clear why espT is so rare, and what impact EspM and EspT have on EPEC and EHEC infection.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Dados de Sequência Molecular
10.
Nat Commun ; 5: 5887, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25523213

RESUMO

The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.


Assuntos
Difosfato de Adenosina/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Quinases da Família src/metabolismo , Difosfato de Adenosina/genética , Motivos de Aminoácidos , Escherichia coli Êntero-Hemorrágica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores de IgG/metabolismo , Quinases da Família src/química , Quinases da Família src/genética
11.
J Biol Chem ; 282(18): 13151-9, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17311917

RESUMO

We report here the first direct assessment of the specificity of a class of peptidoglycan cross-linking enzymes, the L,D-transpeptidases, for the highly diverse structure of peptidoglycan precursors of Gram-positive bacteria. The lone functionally characterized member of this new family of active site cysteine peptidases, Ldt(fm) from Enterococcus faecium, was previously shown to bypass the D,D-transpeptidase activity of the classical penicillin-binding proteins leading to high level cross-resistance to glycopeptide and beta-lactam antibiotics. Ldt(fm) homologues from Bacillus subtilis (Ldt(Bs)) and E. faecalis (Ldt(fs)) were found here to cross-link their cognate disaccharide-peptide subunits containing meso-diaminopimelic acid (mesoDAP(3)) and L-Lys(3)-L-Ala-L-Ala at the third position of the stem peptide, respectively, instead of L-Lys(3)-d-iAsn in E. faecium. Ldt(fs) differed from Ldt(fm) and Ldt(Bs) by its capacity to hydrolyze the L-Lys(3)-D-Ala(4) bond of tetrapeptide (L,D-carboxypeptidase activity) and pentapeptide (L,D-endopeptidase activity) stems, in addition to the common cross-linking activity. The three enzymes were specific for their cognate acyl acceptors in the cross-linking reaction. In contrast to Ldt(fs), which was also specific for its cognate acyl donor, Ldt(fm) tolerated substitution of L-Lys(3)-D-iAsn by L-Lys(3)-L-Ala-L-Ala. Likewise, Ldt(Bs) tolerated substitution of mesoDAP(3) by L-Lys(3)-D-iAsn and L-Lys(3)-L-Ala-L-Ala in the acyl donor. Thus, diversification of the structure of peptidoglycan precursors associated with speciation has led to a parallel evolution of the substrate specificity of the L,D-transpeptidases affecting mainly the recognition of the acyl acceptor. Blocking the assembly of the side chain could therefore be used to combat antibiotic resistance involving L,D-transpeptidases.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/genética , Peptidil Transferases/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Cisteína Endopeptidases/genética , Ácido Diaminopimélico/metabolismo , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/enzimologia , Oligopeptídeos/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
12.
J Bacteriol ; 186(5): 1221-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14973044

RESUMO

Peptidoglycan polymerization complexes contain multimodular penicillin-binding proteins (PBP) of classes A and B that associate a conserved C-terminal transpeptidase module to an N-terminal glycosyltransferase or morphogenesis module, respectively. In Enterococcus faecalis, class B PBP5 mediates intrinsic resistance to the cephalosporin class of beta-lactam antibiotics, such as ceftriaxone. To identify the glycosyltransferase partner(s) of PBP5, combinations of deletions were introduced in all three class A PBP genes of E. faecalis JH2-2 (ponA, pbpF, and pbpZ). Among mutants with single or double deletions, only JH2-2 DeltaponA DeltapbpF was susceptible to ceftriaxone. Ceftriaxone resistance was restored by heterologous expression of pbpF from Enterococcus faecium but not by mgt encoding the monofunctional glycosyltransferase of Staphylococcus aureus. Thus, PBP5 partners essential for peptidoglycan polymerization in the presence of beta-lactams formed a subset of the class A PBPs of E. faecalis, and heterospecific complementation was observed with an ortholog from E. faecium. Site-directed mutagenesis of pbpF confirmed that the catalytic serine residue of the transpeptidase module was not required for resistance. None of the three class A PBP genes was essential for viability, although deletion of the three genes led to an increase in the generation time and to a decrease in peptidoglycan cross-linking. As the E. faecalis chromosome does not contain any additional glycosyltransferase-related genes, these observations indicate that glycan chain polymerization in the triple mutant is performed by a novel type of glycosyltransferase. The latter enzyme was not inhibited by moenomycin, since deletion of the three class A PBP genes led to high-level resistance to this glycosyltransferase inhibitor.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Hexosiltransferases/metabolismo , Muramilpentapeptídeo Carboxipeptidase/metabolismo , Peptidil Transferases/metabolismo , Resistência beta-Lactâmica , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Glicosiltransferases/antagonistas & inibidores , Hexosiltransferases/classificação , Hexosiltransferases/genética , Testes de Sensibilidade Microbiana , Muramilpentapeptídeo Carboxipeptidase/classificação , Muramilpentapeptídeo Carboxipeptidase/genética , Oligossacarídeos/farmacologia , Proteínas de Ligação às Penicilinas , Peptidoglicano/química , Peptidoglicano/metabolismo , Peptidil Transferases/classificação , Peptidil Transferases/genética
13.
J Biol Chem ; 279(40): 41546-56, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15280360

RESUMO

The peptidoglycan cross-bridges of Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium consist of the sequences Gly(5), l-Ala(2), and d-Asx, respectively. Expression of the fmhB, femA, and femB genes of S. aureus in E. faecalis led to the production of peptidoglycan precursors substituted by mosaic side chains that were efficiently used by the penicillin-binding proteins for cross-bridge formation. The Fem transferases were specific for incorporation of glycyl residues at defined positions of the side chains in the absence of any additional S. aureus factors such as tRNAs used for amino acid activation. The PBPs of E. faecalis displayed a broad substrate specificity because mosaic side chains containing from 1 to 5 residues and Gly instead of l-Ala at the N-terminal position were used for peptidoglycan cross-linking. Low affinity PBP2a of S. aureus conferred beta-lactam resistance in E. faecalis and E. faecium, thereby indicating that there was no barrier to heterospecific expression of resistance caused by variations in the structure of peptidoglycan precursors. Thus, conservation of the structure of the peptidoglycan cross-bridges in members of the same species reflects the high specificity of the enzymes for side chain synthesis, although this is not essential for the activity of the PBPs.


Assuntos
Bactérias Gram-Positivas/metabolismo , Peptidoglicano/biossíntese , Sequência de Aminoácidos , Enterococcus faecalis/metabolismo , Enterococcus faecium/metabolismo , Peptidoglicano/química , Peptidil Transferases/metabolismo , Staphylococcus aureus/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA