RESUMO
Mitochondria are essential for energy production and although they have their own genome, many nuclear-encoded mitochondrial ribosomal proteins (MRPs) are required for proper function of the organelle. Although mutations in MRPs have been associated with human diseases, little is known about their role during development. Presented here are the null phenotypes for 21 nuclear-encoded mitochondrial proteins and in-depth characterization of mouse embryos mutant for the Mrp genes Mrpl3, Mrpl22, Mrpl44, Mrps18c and Mrps22 Loss of each MRP results in successful implantation and egg-cylinder formation, followed by severe developmental delay and failure to initiate gastrulation by embryonic day 7.5. The robust and similar single knockout phenotypes are somewhat surprising given there are over 70 MRPs and suggest little functional redundancy. Metabolic analysis reveals that Mrp knockout embryos produce significantly less ATP than controls, indicating compromised mitochondrial function. Histological and immunofluorescence analyses indicate abnormal organelle morphology and stalling at the G2/M checkpoint in Mrp null cells. The nearly identical pre-gastrulation phenotype observed for many different nuclear-encoded mitochondrial protein knockouts hints that distinct energy systems are crucial at specific time points during mammalian development.
Assuntos
Desenvolvimento Embrionário/genética , Gastrulação/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , Proteínas Ribossômicas/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , FenótipoRESUMO
Protein phosphatases regulate a wide array of proteins through post-translational modification and are required for a plethora of intracellular events in eukaryotes. While some core components of the protein phosphatase complexes are well characterized, many subunits of these large complexes remain unstudied. Here we characterize a loss-of-function allele of the protein phosphatase 1 regulatory subunit 35 (Ppp1r35) gene. Homozygous mouse embryos lacking Ppp1r35 are developmental delayed beginning at embryonic day (E) 7.5 and have obvious morphological defects at later stages. Mutants fail to initiate turning and do not progress beyond the size or staging of normal E8.5 embryos. Consistent with recent in vitro studies linking PPP1R35 with the microcephaly protein Rotatin and with a role in centrosome formation, we show that Ppp1r35 mutant embryos lack primary cilia. Histological and molecular analysis of Ppp1r35 mutants revealed that notochord development is irregular and discontinuous and consistent with a role in primary cilia, that the floor plate of the neural tube is not specified. Similar to other mutant embryos with defects in centriole function, Ppp1r35 mutants displayed increased cell death that is prevalent in the neural tube and an increased number of proliferative cells in prometaphase. We hypothesize that loss of Ppp1r35 function abrogates centriole homeostasis, resulting in a failure to produce functional primary cilia, cell death and cell cycle delay/stalling that leads to developmental failure. Taken together, these results highlight the essential function of Ppp1r35 during early mammalian development and implicate this gene as a candidate for human microcephaly.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cílios/metabolismo , Notocorda/enzimologia , Organogênese , Animais , Proteínas de Ciclo Celular/genética , Cílios/genética , Camundongos , Camundongos KnockoutRESUMO
Zinc finger domains of the Cys-Cys-Cys-His (CCCH) class are evolutionarily conserved proteins that bind nucleic acids and are involved in various biological processes. Nearly 60 CCCH-type zinc finger proteins have been identified in humans and mice, most have not been functionally characterized. Here, we provide the first in vivo functional characterization of ZC3H4-a novel CCCH-type zinc finger protein. Our results show that although Zc3h4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting implantation failure. Outgrowth assays reveal that mutant blastocysts either fail to hatch from the zona pellucida, or can hatch but do not form a typical inner cell mass colony, the source of embryonic stem cells (ESCs). Although there is no change in levels of reactive oxygen species, Zc3h4 mutants display severe DNA breaks and reduced cell proliferation. Analysis of lineage specification reveals that both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification in the mutant blastocysts. In summary, these findings demonstrate the essential role of ZC3H4 during early mammalian embryogenesis.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Animais , Proliferação de Células/genética , Quebras de DNA , Proteínas de Ligação a DNA/genética , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos , Camundongos Knockout , MutaçãoRESUMO
Bacterial wound infections are a threat to public health. Although antibiotics currently provide front-line treatments for bacterial infections, the development of drug resistance coupled with the defenses provided through biofilm formation render these infections difficult, if not impossible, to cure. Antimicrobials from natural resources provide unique antimicrobial mechanisms and are generally recognized as safe and sustainable. Herein, an all-natural antimicrobial platform is reported. It is active against bacterial biofilms and accelerates healing of wound biofilm infections in vivo. This antimicrobial platform uses gelatin stabilized by photocrosslinking using riboflavin (vitamin B2) as a photocatalyst, and carvacrol (the primary constituent of oregano oil) as the active antimicrobial. The engineered nanoemulsions demonstrate broad-spectrum antimicrobial activity towards drug-resistant bacterial biofilms and significantly expedite wound healing in an in vivo murine wound biofilm model. The antimicrobial activity, wound healing promotion, and biosafety of these nanoemulsions provide a readily translatable and sustainable strategy for managing wound infections.
Assuntos
Anti-Infecciosos , Infecções Bacterianas , Infecção dos Ferimentos , Animais , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Camundongos , Infecção dos Ferimentos/tratamento farmacológicoRESUMO
Despite having been sequenced over a decade ago, the functional significance of much of the mammalian genome remains unknown. The mouse has become the preeminent mammalian model for identifying endogenous gene function in vivo. Here we characterize the phenotype of a loss-of function allele for the evolutionarily conserved transcription factor, Elongation Factor Homolog 1 (Elof1). Recent work utilizing the yeast homolog, Elf1, has demonstrated that Elf1 associates with the RNA polymerase II complex to promote elongation by relieving the association of the template DNA strand with bound histones. Loss of Elof1 results in developmental delay and morphological defects during early mouse development resulting in peri-gastrulation lethality. Although Elof1 is highly conserved we observe tissue specific expression during gastrulation and in adult murine tissues, suggesting there may be other genes with similar function in diverse tissues or that mElof1 has adopted lineage specific functions. To better understand its function in mammalian transcription, we examined splice variants and find that Elof1 regulates mutually exclusive exon use in vivo. Distinct from what has been demonstrated in yeast, we demonstrate that Elof1 is essential for viability during mammalian gastrulation which may be due to a role mediating tissue specific exclusive exon use, a regulatory function unique to higher eukaryotes.