Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Opt Express ; 32(6): 9589-9601, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571189

RESUMO

The Stern-Gerlach experiment, a seminal quantum physics experiment, demonstrated the intriguing phenomenon of particle spin quantization, leading to applications in matter-wave interferometry and weak-value measurements. Over the years, several optical experiments have exhibited similar behavior to the Stern-Gerlach experiment, revealing splitting in both spatial and angular domains. Here we show, theoretically and experimentally, that the Stern-Gerlach effect can be extended into the time and frequency domains. By harnessing Kerr nonlinearity in optical fibers, we couple signal and idler pulses using two pump pulses, resulting in the emergence of two distinct eigenstates whereby the signal and idler are either in phase or out of phase. This nonlinear coupling emulates a synthetic magnetization, and by varying it linearly in time, one eigenstate deflects towards a higher frequency, while the other deflects towards a lower frequency. This effect can be utilized to realize an all-optical, phase-sensitive frequency beam splitter, establishing a new paradigm for classical and quantum data processing of frequency-bin superposition states.

2.
Opt Express ; 32(6): 10158-10174, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571234

RESUMO

Control over the joint spectral amplitude of a photon pair has proved highly desirable for many quantum applications, since it contains the spectral quantum correlations, and has crucial effects on the indistinguishability of photons, as well as promising emerging applications involving complex quantum functions and frequency encoding of qudits. Until today, this has been achieved by engineering a single degree of freedom, either by custom poling nonlinear crystal or by shaping the pump pulse. We present a combined approach where two degrees of freedom, the phase-matching function, and the pump spectrum, are controlled. This approach enables the two-dimensional control of the joint spectral amplitude, generating a variety of spectrally encoded quantum states - including frequency uncorrelated states, frequency-bin Bell states, and biphoton qudit states. In addition, the joint spectral amplitude is controlled by photon bunching and anti-bunching, reflecting the symmetry of the phase-matching function.

3.
Opt Lett ; 49(8): 2013-2016, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621064

RESUMO

The Smith-Purcell effect allows for coherent free-electron-driven compact light sources over the entire electromagnetic spectrum. Intriguing interaction regimes, with prospects for quantum optical applications, are expected when the driving free electron enters the sub-keV range, though this has until now remained an experimental challenge. Here, we demonstrate the Smith-Purcell light emission from UV to visible using engineerable, fabricated gratings with periodicities as low as 19 nm and with electron energies as low as 300 eV. Our findings constitute a major step toward broadband, highly tunable, on-chip light sources, observation of quantum recoil effects, and tunable EUV and x ray sources from swift electrons.

4.
Opt Lett ; 49(4): 1025-1028, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359233

RESUMO

More than three decades after the inception of electron spin-based information encoding inspired by nonlinear electro-optic devices, we present a complementary approach: nonlinear optical devices directly inspired by spintronics. We theoretically propose an all-optical spin-valve device and a spin-dependent beam splitter, where the optical pseudospin is a superposition of signal and idler beams undergoing a sum-frequency generation process inside a 2D nonlinear photonic crystal. We delve into the operation of these devices, examining key properties such as the transmission angle and splitting ratio, optically controlled by the pump beam. Our findings open new avenues for both classical and quantum optical information processing in the frequency domain.

5.
Opt Express ; 31(12): 20387-20397, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381434

RESUMO

Multimode bright squeezed vacuum is a non-classical state of light hosting a macroscopic photon number while offering promising capacity for encoding quantum information in its spectral degree of freedom. Here, we employ an accurate model for parametric down-conversion in the high-gain regime and use nonlinear holography to design quantum correlations of bright squeezed vacuum in the frequency domain. We propose the design of quantum correlations over two-dimensional lattice geometries that are all-optically controlled, paving the way toward continuous-variable cluster state generation on an ultrafast timescale. Specifically, we investigate the generation of a square cluster state in the frequency domain and calculate its covariance matrix and the quantum nullifier uncertainties, that exhibit squeezing below the vacuum noise level.

6.
Nano Lett ; 22(14): 5641-5650, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35791573

RESUMO

Metasurfaces constitute a powerful approach to generate and control light by engineering optical material properties at the subwavelength scale. Recently, this concept was applied to manipulate free-electron radiation phenomena, rendering versatile light sources with unique functionalities. In this Letter, we experimentally demonstrate spectral and angular control over coherent light emission by metasurfaces that interact with free-electrons under grazing incidence. Specifically, we study metalenses based on chirped metagratings that simultaneously emit and shape Smith-Purcell radiation in the visible and near-infrared spectral regime. In good agreement with theory, we observe the far-field signatures of strongly convergent and divergent cylindrical radiation wavefronts using in situ hyperspectral angle-resolved light detection in a scanning electron microscope. Furthermore, we theoretically explore simultaneous control over the polarization and wavefront of Smith-Purcell radiation via a split-ring-resonator metasurface, enabling tunable operation by spatially selective mode excitation at nanometer resolution. Our work highlights the potential of merging metasurfaces with free-electron excitations for versatile and highly tunable radiation sources in wide-ranging spectral regimes.

7.
Opt Express ; 30(12): 21535-21543, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224871

RESUMO

Optical N00N states are N-photon path entangled states with important applications in quantum metrology. However, their use was limited till now owing to the difficulties of generating them in an efficient and robust manner. Here we propose and experimentally demonstrate two new simple, compact and robust schemes to generate path entangled N00N states with N = 2 that emerge directly from the nonlinear interaction. The first scheme is based on shaping the pump beam, and the second scheme is based on modulating the nonlinear coefficient of the crystal. These new methods exhibit high coincidence count rates for the detection of a N00N state, reaching record value of 2 × 105 coincidences per second. We observe super-resolution by measuring the second order correlation on the generated N = 2 state in an interferometric setup, showing the distinct fringe periodicity at half of the optical wavelength. Our findings may pave the way towards scalable and efficient sources for super-resolved quantum metrology applications and for the generation of bright squeezed vacuum states.

8.
Opt Express ; 30(25): 45694-45704, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522969

RESUMO

We report on the experimental realization and a systematic study of optical frequency comb generation in doubly resonant intracavity second harmonic generation (SHG). The efficiency of intracavity nonlinear processes usually benefits from the increasing number of resonating fields. Yet, achieving the simultaneous resonance of different fields may be technically complicated, all the more when a phase matching condition must be fulfilled as well. In our cavity we can separately control the resonance condition for the fundamental and its second harmonic, by simultaneously acting on an intracavity dispersive element and on a piezo-mounted cavity mirror, without affecting the quasi-phase matching condition. In addition, by finely adjusting the laser-to-cavity detuning, we are able to observe steady comb emission across the whole resonance profile, revealing the multiplicity of comb structures, and the substantial role of thermal effects on their dynamics. Lastly, we report the results of numerical simulations of comb dynamics, which include photothermal effects, finding a good agreement with the experimental observations. Our system provides a framework for exploring the richness of comb dynamics in doubly resonant SHG systems, assisting the design of chip-scale quadratic comb generators.

9.
Opt Lett ; 47(14): 3491-3494, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838710

RESUMO

We design, fabricate, and characterize integrated mode sorters for multimode fibers that guide well-separated vortex modes. We use 3D direct laser printing to print a collimator and a Cartesian to a log-polar mode transformer on the tip of the fiber. This polarization insensitive device can send different modes into different exit angles and is therefore useful for space division multiplexed optical communication. Two types of fibers with two corresponding sorters are used, enabling the sorting of either four or eight different modes in a compact and robust manner. The integration of the vortex fiber and multiplexer opens the door for widespread exploitation of orbital angular momentum (OAM) for data multiplexing in fiber networks.

10.
Opt Lett ; 47(15): 3656-3659, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913282

RESUMO

Transverse second-harmonic generation, in which the emission angles of the second harmonic are determined by the spatial modulation of the quadratic nonlinearity, has important applications in nonlinear optical imaging, holography, and beam shaping. Here we study the role of the local duty cycle of the nonlinearity on the light intensity distribution in transverse second-harmonic generation, taking the generation of perfect vortices in periodically poled ferroelectric crystal as an example. We show, theoretically and experimentally, that spatial variations of the nonlinearity modulation must be accompanied by the corresponding changes of the width of inverted ferroelectric domains, to ensure uniformity of the light intensity distribution in the generated second harmonic. This work provides a fundamental way to achieve high-quality transverse second-harmonic generation and, hence, opens more possibilities in applications based on harmonic generation and its control.

11.
Phys Rev Lett ; 128(21): 214101, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687471

RESUMO

We study theoretically and observe experimentally the evolution of periodic wave trains by utilizing surface gravity water wave packets. Our experimental system enables us to observe both the amplitude and the phase of these wave packets. For low steepness waves, the propagation dynamics is in the linear regime, and these waves unfold a Talbot carpet. By increasing the steepness of the waves and the corresponding nonlinear response, the waves follow the Akhmediev breather solution, where the higher frequency periodic patterns at the fractional Talbot distance disappear. Further increase in the wave steepness leads to deviations from the Akhmediev breather solution and to asymmetric breaking of the wave function. Unlike the periodic revival that occurs in the linear regime, here the wave crests exhibit self acceleration, followed by self deceleration at half the Talbot distance, thus completing a smooth transition of the periodic pulse train by half a period. Such phenomena can be theoretically modeled by using the Dysthe equation.

12.
Opt Express ; 29(5): 7288-7306, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726233

RESUMO

The application of the adiabatic geometric phase (AGP) to nonlinear frequency conversion may help to develop new types of all-optical devices, which leads to all-optical modulation of the phase front of one wave by the intensity of other waves. In this paper, we develop the canonical Hamilton equation and a corresponding geometric representation for two schemes of four-wave mixing (FWM) processes (ω1 + ω2 = ω3 + ω4 and ω1 + ω2 + ω3 = ω4), which can precisely describe and calculate the AGP controlled by the quasi-phase matching technique. The AGPs of the idler (ω1) and signal (ω4) waves for these two schemes of FWM are studied systematically when the two pump waves (ω2 and ω3) are in either the undepleted or in the depleted pump cases, respectively. The analysis reveals that the proposed methods for calculating the AGP are universal in both cases. We expect that the analysis of AGP in FWM processes can be applied to all-optically shaping or encoding of ultrafast light pulse.

13.
Phys Rev Lett ; 127(6): 060403, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420316

RESUMO

When multiple quantum emitters radiate, their emission rate may be enhanced or suppressed due to collective interference in a process known as super- or subradiance. Such processes are well known to occur also in light emission from free electrons, known as coherent cathodoluminescence. Unlike atomic systems, free electrons have an unbounded energy spectrum, and, thus, all their emission mechanisms rely on electron recoil, in addition to the classical properties of the dielectric medium. To date, all experimental and theoretical studies of super- and subradiance from free electrons assumed only classical correlations between particles. However, dependence on quantum correlations, such as entanglement between free electrons, has not been studied. Recent advances in coherent shaping of free-electron wave functions motivate the investigation of such quantum regimes of super- and subradiance. In this Letter, we show how a pair of coincident path-entangled electrons can demonstrate either super- or subradiant light emission, depending on the two-particle wave function. By choosing different free-electron Bell states, the spectrum and emission pattern of the light can be reshaped, in a manner that cannot be accounted for by a classical mixed state. We show these results for light emission in any optical medium and discuss their generalization to many-body quantum states. Our findings suggest that light emission can be sensitive to the explicit quantum state of the emitting matter wave and possibly serve as a nondestructive measurement scheme for measuring the quantum state of many-body systems.

14.
Phys Rev Lett ; 127(1): 014303, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270304

RESUMO

We show that in order to guide waves, it is sufficient to periodically truncate their edges. The modes supported by this type of wave guide propagate freely between the slits, and the propagation pattern repeats itself. We experimentally demonstrate this general wave phenomenon for two types of waves: (i) plasmonic waves propagating on a metal-air interface that are periodically blocked by nanometric metallic walls, and (ii) surface gravity water waves whose evolution is recorded, the packet is truncated, and generated again to show repeated patterns. This guiding concept is applicable for a wide variety of waves.

15.
Opt Lett ; 45(9): 2538-2541, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356810

RESUMO

The self-imaging of periodic light patterns, also known as the Talbot effect, is usually limited to periods that are larger than the wavelength. Here we present, theoretically and experimentally, a method to overcome this limitation by using superoscillating light patterns. The input intensity distribution is a periodic band-limited function with relatively large periods, but it contains regions of multilobe periodic oscillations with periods that are smaller than half of the wavelength. We observe the revival of the input pattern, including the subwavelength superoscillating regions, at large distances of more than 40 times the optical wavelength. Moreover, at fractional Talbot distances, we observe even faster local oscillations, with periods of approximately one-third of the optical wavelength.

16.
Opt Express ; 27(24): 34530-34541, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878641

RESUMO

Superoscillating function is a band-limited function that is locally oscillating faster than its highest Fourier component. In this work, we study and implement methods to generate multi-lobe optical superoscillating beams, with nearly constant intensity and constant local frequency. We generated superoscillating patterns having up to 12 sub-wavelength oscillations, with local frequency of 20% to 40% above the band-limit. We then test the potential application of these beams to super-resolution structured illumination microscopy. By utilizing the Moiré effect on a fluorescent grating, we have demonstrated experimentally resolution improvement over the conventional sinusoidal illumination. Our simulations show that structured illumination microscopy with super oscillating multi-lobe beams can provide more than twofold improvement in resolution, with respect to the classical diffraction limit and for coherent or incoherent modalities.

17.
Opt Lett ; 44(13): 3358-3361, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259960

RESUMO

Phase-matched nonlinear processes exhibit a tradeoff between the conversion efficiency and the acceptance bandwidth. Adiabatic nonlinear processes, in which the phase mismatch varies slowly along the interaction length, enable us to overcome this tradeoff, allowing an efficient frequency conversion with broad spectral and thermal bandwidths. Until now, the variation in the phase mismatch condition was mainly based on quasi-phase matching in ferroelectric crystals. However, this solution is limited to low power sources. Here, instead, we study the adiabatic second harmonic in birefringently phase-matched lithium triborate crystal, enabling us to handle much higher power levels. The variation in the phase mismatch is achieved by inducing a temperature gradient along the crystal. By using a 50 mm long crystal, the adiabatic process provided a temperature bandwidth of 18°C, 5.4 times wider than what is achieved when the same crystal is held at the fixed phase-matching temperature. The conversion efficiency exceeded 60% for a 0.9 millijoule pump pulse.

18.
Opt Lett ; 44(15): 3689-3692, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368944

RESUMO

We experimentally demonstrate dynamic, electrically controlled shaping of plasmonic beams, propagating at the boundary between a metal and a dielectric, by using the thermo-optic effect. The concept is based on selectively heating a specific region in which the plasmonic beam passes by injecting electrical current to an isolated metal layer. This leads to transverse modulation of the wavefront through the thermal dispersion of the dielectric layer above this metal region. We demonstrate two active plasmonic devices: a plasmonic mode converter between the fundamental and first-order Hermite-Gauss modes and a tunable plasmonic lens with a dynamically varying focal length.

19.
Opt Lett ; 44(21): 5234-5237, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674976

RESUMO

We have designed and experimentally studied non-planar curved space plasmonic optical elements. Three different smooth curved space plasmonic structures were studied: a dome that acts either as a focusing element or as a deflector for plasmonic beams, a cone that acts as a plasmonic prism, and a tapered book cover that alters the size of a plasmonic guided wave. The functional mechanism of these elements relies purely on the curvature-induced effective potential and does not require any additional dielectric layer for shaping the plasmonic beams. The curved space plasmonic elements open exciting new possibilities for guiding, focusing, deflecting, and controlling the propagation of plasmonic beams in a compact manner.

20.
Phys Rev Lett ; 122(12): 124302, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978087

RESUMO

We theoretically study and successfully observe the evolution of Gaussian and Airy surface gravity water wave packets propagating in an effective linear potential. This potential results from a homogeneous and time-dependent flow created by a computer-controlled water pump. For both wave packets we measure the amplitudes and the cubic phases appearing due to the linear potential. Furthermore, we demonstrate that the self-acceleration of the Airy surface gravity water wave packets can be completely canceled by a linear potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA