RESUMO
Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.
Assuntos
Oxirredutases , Zea mays , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Plastídeos/genética , Plastídeos/metabolismoRESUMO
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Assuntos
Análise do Fluxo Metabólico , Amido , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Amido/genética , Amido/metabolismo , Nicotiana/metabolismo , TriglicerídeosRESUMO
The negative association between protein and oil production in soybean (Glycine max) seed is well-documented. However, this inverse relationship is based primarily on the composition of mature seed, which reflects the cumulative result of events over the course of soybean seed development and therefore does not convey information specific to metabolic fluctuations during developmental growth regimes. In this study, we assessed maternal nutrient supply via measurement of seed coat exudates and metabolite levels within the cotyledon throughout development to identify trends in the accumulation of central carbon and nitrogen metabolic intermediates. Active metabolic activity during late seed development was probed through transient labeling with 13C substrates. The results indicated: (1) a drop in lipid contents during seed maturation with a concomitant increase in carbohydrates, (2) a transition from seed filling to maturation phases characterized by quantitatively balanced changes in carbon use and CO2 release, (3) changes in measured carbon and nitrogen resources supplied maternally throughout development, (4) 13C metabolite production through gluconeogenic steps for sustained carbohydrate accumulation as the maternal nutrient supply diminishes, and (5) oligosaccharide biosynthesis within the seed coat during the maturation phase. These results highlight temporal engineering targets for altering final biomass composition to increase the value of soybeans and a path to breaking the inverse correlation between seed protein and oil content.
Assuntos
Carbono/metabolismo , Glycine max/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Biomassa , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Metabolismo dos Lipídeos , Oligossacarídeos/biossíntese , Óleos de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimentoRESUMO
Functional stay-green is a valuable trait that extends the photosynthetic period, increases source capacity and biomass and ultimately translates to higher grain yield. Selection for higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL controlling functional stay-green that was discovered in a mapping population derived from the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very different rates of leaf senescence. This QTL was mapped to a single gene containing a NAC-domain transcription factor that we named nac7. Transgenic maize lines where nac7 was down-regulated by RNAi showed delayed senescence and increased both biomass and nitrogen accumulation in vegetative tissues, demonstrating NAC7 functions as a negative regulator of the stay-green trait. More importantly, crosses between nac7 RNAi parents and two different elite inbred testers produced hybrids with prolonged stay-green and increased grain yield by an average 0.29 megagram/hectare (4.6 bushel/acre), in 2 years of multi-environment field trials. Subsequent RNAseq experiments, one employing nac7 RNAi leaves and the other using leaf protoplasts overexpressing Nac7, revealed an important role for NAC7 in regulating genes in photosynthesis, chlorophyll degradation and protein turnover pathways that each contribute to the functional stay-green phenotype. We further determined the putative target of NAC7 and provided a logical extension for the role of NAC7 in regulating resource allocation from vegetative source to reproductive sink tissues. Collectively, our findings make a compelling case for NAC7 as a target for improving functional stay-green and yields in maize and other crops.
Assuntos
Fotossíntese , Locos de Características Quantitativas , Fatores de Transcrição/genética , Zea mays/genética , Biomassa , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Nitrogênio , Folhas de Planta , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Zea mays/crescimento & desenvolvimentoRESUMO
Inferring phenotypic outcomes from genomic features is both a promise and challenge for systems biology. Using gene expression data to predict phenotypic outcomes, and functionally validating the genes with predictive powers are two challenges we address in this study. We applied an evolutionarily informed machine learning approach to predict phenotypes based on transcriptome responses shared both within and across species. Specifically, we exploited the phenotypic diversity in nitrogen use efficiency and evolutionarily conserved transcriptome responses to nitrogen treatments across Arabidopsis accessions and maize varieties. We demonstrate that using evolutionarily conserved nitrogen responsive genes is a biologically principled approach to reduce the feature dimensionality in machine learning that ultimately improved the predictive power of our gene-to-trait models. Further, we functionally validated seven candidate transcription factors with predictive power for NUE outcomes in Arabidopsis and one in maize. Moreover, application of our evolutionarily informed pipeline to other species including rice and mice models underscores its potential to uncover genes affecting any physiological or clinical traits of interest across biology, agriculture, or medicine.