Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Pept Sci ; 29(10): e3494, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37051739

RESUMO

We report the characterization of the three-dimensional structure of the CEMP1-p1 peptide [MGTSSTDSQQAQHRRCSTSN: corresponding to residues 1-20 of the N-terminus of cementum protein 1 (CEMP1)]. This peptide imitates the capacity of CEMP1 to stimulate hydroxyapatite (HA) crystal nucleation and growth, and promotes the differentiation of periodontal ligament cells into a cementoblastic phenotype. Additionally, in experimental models of critical-sized calvarial defects in Wistar rats, CEMP1-p1 has shown osteogenic properties that enhanced the physiological deposition and maturation of newly formed bone. In this work, studies of CEMP1-p1 by circular dichroism (CD) and nuclear magnetic resonance (NMR) were performed in trifluoroethanol D2 (TFED2) and aqueous solution to determine the 3D structure of the peptide. Using the 3D model, experimental data from HA crystals formation and calcium fluorescence emission, we explain the biological mechanisms involved in CEMP1-p1 activity to promote calcium recruitment and its affinity to HA crystals. This information is valuable because it proposes, for the first time, a plausible molecular mechanism during the mineralization process, from a specific cementum protein-derived peptide.


Assuntos
Cálcio , Cemento Dentário , Ratos , Animais , Ratos Wistar , Peptídeos/química , Espectroscopia de Ressonância Magnética
2.
J Periodontal Res ; 57(2): 305-315, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34839539

RESUMO

BACKGROUND AND OBJECTIVE: Regeneration of large bony defects is an unmet medical need. The therapeutic effect of fully developed bony constructs engineered in vitro from mineralized scaffold and adult stem cells is hampered by deficient long-term graft integration. The purpose of the present study was to investigate the regenerative capacity of a bony primordial construct consisting of human oral mucosa stem cells (hOMSC)-derived osteoprogenitors and absorbable Gelfoam® sponges. METHODS: Gingiva and alveolar mucosa-derived hOMSC were differentiated into osteoprogenitors (Runx2 and osterix positive) and loaded into Gelfoam® sponges to generate primordial hOMSC constructs. These were implanted into critical size calvaria defects in the rat. Defects treated with human dermal fibroblasts (HDF) constructs; Gelfoam® sponges and untreated defects served as controls. RESULTS: After 120-day post-implantation defects treated with hOMSC constructs, HDF constructs and gelatin and untreated defects exhibited 86%, 30%, 21%, and 9% of new bone formation, respectively. Immunofluorescence analysis for human nuclear antigen (HNA), bone sialoprotein (BSP), and osteocalcin (OCN) revealed viable hOMSC-derived osteoblasts and osteocytes that formed most of the cell population of the newly formed bone at 30 and 120 days post surgery. Few HNA-positive HDF that were negative for BSP and OCN were identified together with inflammatory cells in the soft tissue adjacent to new bone formation only at 30 days post implantation. CONCLUSION: Collectively, the results demonstrate that primordial in vitro engineered constructs consisting of hOMSC-derived osteoprogenitors and absorbable gelatin almost completely regenerate critical size defects in an immunocompetent xenogeneic animal by differentiating into functional osteoblasts that retain the immunomodulatory ability of naïve hOMSC.


Assuntos
Mucosa Bucal , Crista Neural , Animais , Regeneração Óssea , Diferenciação Celular , Humanos , Ratos , Crânio/cirurgia , Células-Tronco
3.
J Periodontal Res ; 56(6): 1223-1232, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34510433

RESUMO

BACKGROUND AND OBJECTIVE: Cementum protein 1 (CEMP1) has the capacity to promote differentiation of periodontal ligament (PDL) cells toward a cementoblastic phenotype in vitro and bone regeneration in vivo. In this study, we tested the capabilities of a synthetic cementum protein 1-derived peptide, MGTSSTDSQQAGHRRCSTSN (CEMP1-p1), to promote regeneration of periodontal structures in a periodontal fenestration defect in rats. MATERIAL AND METHODS: Fenestration defects were created using an extra-oral approach in the buccal aspect of the mandibular first molar roots. Eighteen male Wistar rats were divided into three groups. Two controls (defects non-treated or defects treated with a gelatin matrix scaffold [GMS] only) and the experimental group treated with 5 µg/dose of CEMP1-p1 embedded in GMS. After 28 days, the animals were sacrificed, and the mandibles processed for histopathological examination. Expression of cementum proteins, cementum attachment protein (CAP), CEMP1, integrin binding sialoprotein (IBSP), and osteocalcin (OCN), was assessed using immunofluorescence. The formation of new cementum, bone, and PDL fibers were compared between control and experimental groups. RESULTS: The histological analysis revealed that the control group without any treatment new cementum or oriented PDL fibers were not observed. However, the presence of newly bone was detected. In the control group treated with GMS, new cementum formation was not detectable, the PDL fibers were oriented parallel to the longitudinal root axis, and new bone formation was observed. The experimental group showed deposit of acellular extrinsic fiber cementum (AEFC) in a lamellae-like feature with inserted Sharpey's fibers, formation of cellular mixed stratified cementum (CMSC) with the presence of cementocytes, and newly formed bone close to the cementum-enamel junction. Cementoblast cells adjacent to new cementum expressed CAP, CEMP1, IBSP, and OCN. CONCLUSION: These studies show that CEMP1-p1 promotes the formation of AEFC, CMSC, new PDL with Sharpey's fibers inserted in cementum and bone, thus providing strong evidence that the synthetic peptide CEMP1-p1 promotes periodontal regeneration in a rat fenestration model.


Assuntos
Cemento Dentário , Ligamento Periodontal , Animais , Masculino , Osteocalcina , Peptídeos , Periodonto , Ratos , Ratos Wistar
4.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205905

RESUMO

Human oral mucosa stem cells (hOMSCs) arise from the neural crest, they can self-renew, proliferate, and differentiate to several cell lines and could represent a good source for application in tissue engineering. Because of their anatomical location, hOMSCs are easy to isolate, have multilineage differentiation capacity and express embryonic stem cells markers such as-Sox2, Oct3/4 and Nanog. We have used SHEM (supplemented hormonal epithelial medium) media and cultured hOMSCs over human amniotic membrane and determined the cell's capacity to differentiate to an epithelial-like phenotype and to express corneal specific epithelial markers-CK3, CK12, CK19, Pan-cadherin and E-cadherin. Our results showed that hOMSCs possess the capacity to attach to the amniotic membrane and express CK3, CK19, Pan-Cadherin and E-Cadherin without induction with SHEM media and expressed CK12 or changed the expression pattern of E-Cadherin to a punctual-like feature when treated with SHEM media. The results observed in this study show that hOMSCs possess the potential to differentiate toward epithelial cells. In conclusion, our results revealed that hOMSCs readily express markers for corneal determination and could provide the ophthalmology field with a therapeutic alternative for tissue engineering to achieve corneal replacement when compared with other techniques. Nevertheless, further studies are needed to develop a predictable therapeutic alternative for cornea replacement.


Assuntos
Diferenciação Celular/genética , Epitélio Corneano/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Mucosa Bucal/crescimento & desenvolvimento , Âmnio/crescimento & desenvolvimento , Células Cultivadas , Córnea/citologia , Córnea/crescimento & desenvolvimento , Córnea/metabolismo , Meios de Cultura/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mucosa Bucal/citologia , Engenharia Tecidual/tendências
5.
FASEB J ; 33(1): 1167-1178, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113883

RESUMO

The use of recombinant proteins has revolutionized the development of biologic pharmaceuticals; however, they are not free of complications. Some have very high molecular weight, some demonstrate in vivo instability, and the high cost of producing them remains a major problem. On the other hand, it has been shown that peptides derived from active domains keep their biologic activity and can trigger events, such as osteogenesis and bone regeneration. Small peptides are advantageous because of their ease of synthesis and handling and their low immunogenic activity. The purpose of this study was to investigate the functions of a synthetic peptide, cementum protein 1-peptide1 (CEMP-1-p1), both in vitro and in vivo. Our results show that CEMP-1-p1 significantly enhanced the proliferation and differentiation of human periodontal ligament cells toward a mineralizing-like phenotype, as evidenced by increasing alkaline phosphatase (ALP)-specific activity and osterix, runt-related transcription factor (RUNX)-2, integrin binding sialoprotein, bone morphogenetic protein-2, osteocalcin, and cementum protein (CEMP)-1 expression at mRNA and protein levels. In vivo assays performed through standardized critical-size calvarial defects in rats treated with CEMP-1-p1 resulted in newly formed bone after 30 and 60 d. These data demonstrate that CEMP-1-p1 is an effective bioactive peptide for bone tissue regeneration. The application of this bioactive peptide may lead to implementing new strategies for the regeneration of bone and other mineralized tissues.-Correa, R., Arenas, J., Montoya, G., Hoz, L., López, S., Salgado, F., Arroyo, R., Salmeron, N., Romo, E., Zeichner-David, M., Arzate, H. Synthetic cementum protein 1-derived peptide regulates mineralization in vitro and promotes bone regeneration in vivo.


Assuntos
Regeneração Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Peptídeos/farmacologia , Proteínas/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Masculino , Modelos Animais , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Proteínas/química , Ratos , Ratos Wistar , Crânio/anormalidades
6.
J Pept Sci ; 26(12): e3282, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32840040

RESUMO

Biomineralization is a highly regulated process where proteins/peptides-crystal interactions contribute to the shaping, phasing and aggregation of minerals. We have identified and synthesized a cementum attachment protein-derived peptide (CAP-pi), which corresponds to amino acids 40-53 of the N-terminal CAP domain (MASSDEDGTNGGAS) and its phosphorylated variant (MASpSpDEDGTNGGASp) (CAP-pip). The peptide is composed of polar and negatively charged amino acids, which are disordered, according to in silico analysis. Our results show that CAP-pi inhibits hydroxyapatite (HA) formation and growth. However, it possesses low capacity to inhibit calcium oxalate crystal growth. CAP-pip showed a stronger inhibitory effect on the formation and growth of HA. As well as a high capacity to inhibit calcium oxalate monohydrate growth, mainly due to adsorption on specific growth faces. Small peptides have many advantages over the full-size protein, including low-cost production and modulation characteristics that allow for structural changes. Our findings suggest that CAP-pip-derived peptide could possess therapeutic potential to prevent or treat pathological calcifications such as renal stones and vascular calcification.


Assuntos
Biomineralização/efeitos dos fármacos , Durapatita/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Dicroísmo Circular , Cristalização , Humanos , Peptídeos/química , Peptídeos/genética , Fosforilação
7.
Int J Mol Sci ; 21(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075221

RESUMO

Human cementum protein 1 (CEMP1) is known to induce cementoblast and osteoblast differentiation and alkaline phosphatase (ALP) activity in human periodontal ligament-derived cells in vitro and promotes bone regeneration in vivo. CEMP1's secondary structure analysis shows that it has a random-coiled structure and is considered an Intrinsic Disordered Protein (IDP). CEMP1's short peptide sequences mimic the biological capabilities of CEMP1. However, the role and mechanisms of CEMP1's C-terminal-derived synthetic peptide (CEMP1-p4) in the canonical Wnt/ß-catenin signaling pathway are yet to be described. Here we report that CEMP1-p4 promotes proliferation and differentiation of Human Oral Mucosa Stem Cells (HOMSCs) by activating the Wnt/ß-catenin pathway. CEMP1-p4 stimulation upregulated the expression of ß-catenin and glycogen synthase kinase 3 beta (GSK-3B) and activated the transcription factors TCF1/7 and Lymphoid Enhancer binding Factor 1 (LEF1) at the mRNA and protein levels. We found translocation of ß-catenin to the nucleus in CEMP1-p4-treated cultures. The peptide also penetrates the cell membrane and aggregates around the cell nucleus. Analysis of CEMP1-p4 secondary structure revealed that it has a random-coiled structure. Its biological activities included the induction to nucleate hydroxyapatite crystals. In CEMP1-p4-treated HOMSCs, ALP activity and calcium deposits increased. Expression of Osterix (OSX), Runt-related transcription factor 2 (RUNX2), Integrin binding sialoproptein (IBSP) and osteocalcin (OCN) were upregulated. Altogether, these data show that CEMP1-p4 plays a direct role in the differentiation of HOMSCs to a "mineralizing-like" phenotype by activating the ß-catenin signaling cascade.


Assuntos
Mucosa Bucal/crescimento & desenvolvimento , Osteogênese/genética , Ligamento Periodontal/crescimento & desenvolvimento , Proteínas/química , Células-Tronco/citologia , Regeneração Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Cemento Dentário/metabolismo , Durapatita/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Sialoproteína de Ligação à Integrina/genética , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Osteoblastos/metabolismo , Osteocalcina/genética , Peptídeos/química , Peptídeos/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Estrutura Secundária de Proteína , Proteínas/genética , Proteínas/ultraestrutura , Fator de Transcrição Sp7/genética , Células-Tronco/metabolismo , Via de Sinalização Wnt/genética
8.
J Pept Sci ; 25(10): e3211, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410920

RESUMO

A cementum protein 1-derived peptide (CEMP1-p1) consisting of 20 amino acids from the CEMP1's N-terminus region: MGTSSTDSQQAGHRRCSTSN, and its role on the mineralization process in a cell-free system, was characterized. CEMP1-p1's physicochemical properties, crystal formation, and hydroxyapatite (HA) nucleation assays were performed. Crystals induced by CEMP1-p1 were analyzed by scanning electron microscopy, Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy. The results indicate that CEMP1-p1 lacks secondary structure, forms nanospheres that organize into three-dimensional structures, possesses affinity to HA, and induces its nucleation. CEMP1-p1 promotes the formation of spherical structures composed by densely packed prism-like crystals, which revealed a Ca/P ratio of 1.56, corresponding to HA. FTIR-ATR showed predominant spectrum peaks that correspond and are characteristic of HA and octacalcium phosphate (OCP). Analysis by XRD indicates that the crystals show planes with a preferential crystalline orientation for HA and for OCP. HRTEM showed interplanar distances that correspond to crystalline planes of HA and OCP. Crystals are composed by superimposed lamellae, which exhibit epitaxial growth, and each layer of the crystals is structured by nanocrystals. This study reveals that CEMP1-p1 regulates HA crystal formation, somehow mimicking the in vivo process of mineralized tissues bioformation.


Assuntos
Durapatita/química , Peptídeos/química , Proteínas/química , Humanos
9.
Periodontol 2000 ; 67(1): 211-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25494602

RESUMO

Destruction of the periodontium is normally associated with periodontal disease, although many other factors, such as trauma, aging, infections, orthodontic tooth movement and systemic and genetic diseases, can contribute to this process. Strategies (such as guided tissue regeneration) have been developed to guide and control regeneration using bioresorbable membranes and bone grafts. Although effective to a certain point, these strategies have the problem that they are not predictable and do not completely restore the architecture of the original periodontium. To achieve complete repair and regeneration it is necessary to recapitulate the developmental process with complete formation of cementum, bone and periodontal ligament fibers. Detailed knowledge of the biology of cementum is key for understanding how the periodontium functions, identifying pathological issues and for developing successful therapies for repair and regeneration of damaged periodontal tissue. It is the purpose of this review to focus on the role of cementum and its specific components in the formation, repair and regeneration of the periodontium. As cementum is a matrix rich in growth factors that could influence the activities of various periodontal cell types, this review will examine the characteristics of cementum, its composition and the role of cementum components, especially the cementum protein-1, during the process of cementogenesis, and their potential usefulness for regeneration of the periodontal structures in a predictable therapeutic manner.


Assuntos
Calcificação Fisiológica/fisiologia , Cementogênese/fisiologia , Cemento Dentário/fisiologia , Ligamento Periodontal/fisiologia , Periodonto/fisiologia , Regeneração/fisiologia , Cemento Dentário/química , Humanos , Doenças Periodontais/fisiopatologia , Doenças Periodontais/terapia , Ligamento Periodontal/crescimento & desenvolvimento , Periodonto/crescimento & desenvolvimento , Cicatrização/fisiologia
10.
J Biomed Mater Res A ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284510

RESUMO

Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO2 surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO2 surfaces were synthesized by magnetron sputtering technique. The CAP-p15 peptide was physically attached to aTiO2 surfaces and characterized by atomic force microscopy, fluorescence microscopy, and water contact angle measurement. We performed in vitro calcium phosphate nucleation assays using an artificial saliva solution (pH 7.4) to simulate the oral environment. morphological and chemical characterization of the deposits were evaluated by scanning electronic microscopy (SEM) and spectroscopy molecular techniques (Raman Spectroscopy, ATR-FTIR). The aTiO2 surfaces biofunctionalized with CAP-p15 were also analyzed for hPDLCs attachment, proliferation, and in vitro scratch-healing assay. The results let us see that the homogeneous amorphous titanium oxide coating was 70 nanometers thick. The CAP-p15 (1 µg/mL) displayed the ability to adsorb onto the aTiO2 surface, increasing the roughness and maintaining the hydrophilicity of the aTiO2 surfaces. The physical adsorption of CAP-p15 onto the aTiO2 surfaces promoted the precipitation of a uniform layer of crystals with a flake-like morphology and a Ca/P ratio of 1.79. According to spectroscopy molecular analysis, these crystalline deposits correspond to carbonated hydroxyapatite. Regarding cell behavior, the biofunctionalized aTiO2 surfaces improved the adhesion of hPDLCs after 24 h of cell culture, achieving 3.4-fold when compared to pristine surfaces. Moreover, there was an increase in cell proliferation and cell migration processes. Physical adsorption of CAP-p15 onto aTiO2 surfaces enhanced the formation of carbonate hydroxyapatite crystals and promoted the proliferation and migration of human periodontal ligament-derived cells in in vitro studies. This experimental model using the novel bioactive peptide CAP-p15 could be used as an alternative to increasing the osseointegration process of implants.

11.
Biomed Mater ; 19(5)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917837

RESUMO

Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.


Assuntos
Adesão Celular , Diferenciação Celular , Proliferação de Células , Mucosa Bucal , Osteogênese , Células-Tronco , Titânio , Titânio/química , Humanos , Osteogênese/efeitos dos fármacos , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Propriedades de Superfície , Células Cultivadas , Osteoblastos/citologia , Osteoblastos/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Sobrevivência Celular , Osseointegração/efeitos dos fármacos , Materiais Biocompatíveis/química
12.
J Clin Periodontol ; 40(1): 73-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23137193

RESUMO

AIMS: To characterize the mineralized tissue formed constitutively in the supracalvarial region of scid mice by a primitive stem cell population (hOMSC) derived from the lamina propria of the human oral mucosa and gingiva. MATERIAL AND METHODS: Fibrin-hOMSC constructs were cultured for 14 days at which time point they were analysed for the expression of osteoblastic/cementoblastic markers and implanted between the skin and calvaria bones into scid mice. After 8 weeks, the animals were sacrificed and the implantation sites analysed. RESULTS: Two-week-old cultures of fibrin-hOMSC constructs expressed osteogenic/cementogenic markers at the gene level. Macroscopic and radiographic examinations revealed mineralized masses at the implantation sites of fibrin-hOMSC constructs. Histology, histochemistry and immunofluorescence showed mineralized masses consisting of avascular cellular and acellular matrices that stained positively for collagen, Ca, cementum attachment protein, cementum protein 1, bone sialoprotein, alkaline phosphatase, osteocalcin, amelogenin and ameloblastin. Positive anti-human nuclear antigen indicated the human origin of the cells. Atomic force microscopy depicted long prismatic structures organized in lamellar aggregates. CONCLUSIONS: Within the limitation of this study, the results indicate for the first time that fibrin-hOMSC constructs are endowed with the constitutive capacity to develop into mineralized tissues that exhibit certain similarities to cementum and bone.


Assuntos
Regeneração Óssea , Cemento Dentário/fisiologia , Gengiva/citologia , Mucosa Bucal/citologia , Células-Tronco , Fosfatase Alcalina/biossíntese , Amelogenina/biossíntese , Animais , Colágeno/biossíntese , Cemento Dentário/metabolismo , Fibrina , Humanos , Sialoproteína de Ligação à Integrina/biossíntese , Camundongos , Camundongos SCID , Osteocalcina/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Proteínas/metabolismo , Regeneração , Transplante de Células-Tronco
13.
Microsc Res Tech ; 86(1): 41-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314569

RESUMO

The ectopic calcifications of non-mineralized tissues can occur in several forms throughout life, such as pulpal calcification. The presence of pulp stones is a challenge in endodontic treatment because they partially or fully obliterate the pulp chamber hindering access to root canals and their subsequent shaping. This study aimed to determine their crystallographic properties and evaluate the capacity of citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to promote the demineralization of pulp calcifications. The samples were obtained from patients with indications of endodontic treatment, and the radiographic examination was suggestive of pulp stone in at least one permanent tooth. The samples were isolated and analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). The Fourier Transform by high resolution-transmission electron microscopy, Raman microscopy, and X-ray diffraction (XRD) were used to identify the mineral phase and crystallographic characteristics. To evaluate the effect of CA and EDTA on the crystallinity of calcifications, they were submerged into these two individual solutions and the changes were assessed in situ by Raman spectroscopy. The SEM images obtained from calcifications demonstrated irregular morphologies. EDX of sample surfaces shows a high presence of oxygen, carbon, calcium, and phosphorous, however, other elements such as sodium, magnesium, nitrogen, chlorine, potassium, sulfur, and zinc were identified in less quantity. According to Raman, XRD, and high-resolution transmission electron microscopy, the predominant mineral phase identified in the pulpal calcification was a poor crystallinity apatite. According to in situ analyses, the effect of CA and EDTA was observed on the signals of PO4 3- and CH2 groups corresponding to inorganic and organic components. The changes with CA were evident at 7 min while the effect of EDTA was observed until 15 min of treatment. All results indicate that pulp stones have a heterogeneous composition principally composed of apatite with low crystallinity. The solubility of these pathological minerals is adequate using solutions such as EDTA or CA; however, the effectivity depends on the mineralization grade of calcifications, time, and concentration of exposition to this chemical.


Assuntos
Calcinose , Calcificações da Polpa Dentária , Humanos , Ácido Edético/farmacologia , Ácido Cítrico , Microscopia Eletrônica de Varredura , Minerais/análise , Apatitas
14.
J Cell Physiol ; 227(2): 649-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21465469

RESUMO

Cementum is a calcified tissue covering the tooth root surface, which functions as rigid tooth-anchoring structure. Periodontal ligament is a unique non-mineralized connective tissue, and is a source of mineralized tissue forming cells such as cementoblasts and osteoblasts. The CEMP1 is a novel cementum component the presence of which appears to be limited to cementoblasts and their progenitors. In order to understand the function of CEMP1, we investigated CEMP1 expression during the differentiation of human periodontal ligament cells. Immunomagnetically enriched alkaline phosphatase (ALP)-positive periodontal ligament cells preferentially expressed CEMP1. CEMP1 expression was reduced when periodontal ligament cells differentiated to osteoblasts in vitro. Over-expression of CEMP1 in periodontal ligament cells enhanced cementoblast differentiation and attenuated periodontal and osteoblastic phenotypes. Our data demonstrate for the first time that the CEMP1 is not only a marker protein for cementoblast-related cells, but it also regulates cementoblast commitment in periodontal ligament cells.


Assuntos
Cemento Dentário/citologia , Osteoblastos/citologia , Ligamento Periodontal/citologia , Proteínas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Biomarcadores , Diferenciação Celular/fisiologia , Células Cultivadas , Cemento Dentário/metabolismo , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Imuno-Histoquímica , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Proteínas/genética
15.
Cell Biol Int ; 36(2): 129-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21929512

RESUMO

PDL (periodontal ligament) is a source of multi-potent stem cells in humans and their differentiation potential to a cementoblast and osteoblast phenotypes has been shown. Tissue construction from PDL-derived cells could be considered as a valuable technique for periodontal regenerative medicine. On these basis, we determined the role of CEMP1 (cementum protein 1) as a factor to induce differentiation of human PDL cells in a 3D (three-dimensional) fashion. Human PDL cells were grown in an RCCS (rotary cell culture system) D-410 RWV (rotating wall vessel) bioreactor, and maintained in either experimental (CEMP1 2.5 µg/ml) or control media during 4 weeks. Cell proliferation in the presence of CEMP1 was determined. The tissue-like structure formed was analysed histologically, stained with Alizarin Red and Alcian Blue. ALP (alkaline phosphatase)-specific activity, immunostaining, RT-PCR (reverse transcription-PCR) and Western blotting were performed to determine the expression of BSP (bone sialoprotein), enamel [AMBN (ameloblastin) and AMEL (amelogenin)], cementum [CAP (cementum attachment protein) and CEMP1] and cartilage-related proteins (Sox9, aggrecan, types II and X collagens). Our results show that hrCEMP1 (human recombinant CEMP1) promoted cell proliferation by human PDL cells in 3D cultures and induced the formation of a tissue-like structure resembling bone and/or cementum and material similar to cartilage. The addition of hrCEMP1 to the 3D human PDL cell cultures increased ALP-specific activity by 2.0-fold and induced the expression of markers for the osteogenic, cementogenic and chondrogenic phenotypes at the mRNA and protein levels. Our data show that human PDL cells in 3D cultures with the addition of CEMP1 has the potential to be used for the bioengineering reconstruction of periodontal tissues and cartilage since our results suggest that CEMP1 stimulates human PDL cells to differentiate towards different phenotypes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ligamento Periodontal/citologia , Proteínas/farmacologia , Agrecanas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Amelogenina/metabolismo , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual
16.
Calcif Tissue Int ; 87(2): 144-57, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20440482

RESUMO

Periodontal tissue engineering is a complex process requiring the regeneration of bone, cementum, and periodontal ligament (PDL). Since cementum regeneration is poorly understood, we used a dog model of dental pulpal necrosis and in vitro cellular wounding and mineralization assays to determine the mechanism of action of calcium hydroxide, Ca(OH)(2), in cementogenesis. Laser capture microdissection (LCM) followed by qRT-PCR were used to assay responses of periapical tissues to Ca(OH)(2) treatment. Additionally, viability, proliferation, migration, and mineralization responses of human mesenchymal PDL cells to Ca(OH)(2) were assayed. Finally, biochemical inhibitors and siRNA were used to investigate Ca(OH)(2)-mediated signaling in PDL cell differentiation. In vivo, Ca(OH)(2)-treated teeth formed a neocementum in a STRO-1- and cementum protein-1 (CEMP1)-positive cellular environment. LCM-harvested tissues adjacent to the neocementum exhibited higher mRNA levels for CEMP1, integrin-binding sialoprotein, and Runx2 than central PDL cells. In vitro, Ca(OH)(2) and CEMP1 promoted STRO-1-positive cell proliferation, migration, and wound closure. Ca(OH)(2) stimulated expression of the cementum-specific proteins CEMP1 and PTPLA/CAP in an ERK-dependent manner. Lastly, Ca(OH)(2) stimulated mineralization by CEMP1-positive cells. Blocking CEMP1 and ERK function abolished Ca(OH)(2)-induced mineralization, confirming a role for CEMP1 and ERK in the process. Ca(OH)(2) promotes cementogenesis and recruits STRO-1-positive mesenchymal PDL cells to undergo cementoblastic differentiation and mineralization via a CEMP1- and ERK-dependent pathway.


Assuntos
Hidróxido de Cálcio/farmacologia , Cementogênese/efeitos dos fármacos , Cemento Dentário/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ligamento Periodontal/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cementogênese/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cemento Dentário/citologia , Cães , Humanos , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Modelos Animais , Ligamento Periodontal/metabolismo , Ligamento Periodontal/fisiologia , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração
17.
Biochem Biophys Res Commun ; 384(1): 49-54, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19393626

RESUMO

Cementum protein 1 (CEMP1) has been recently cloned, and in vitro experiments have shown functions as regulator of cementoblast behavior and inducer of differentiation of non-osteogenic cells toward a cementoblastic/osteoblastic phenotype. In this study, we have produced a full-length human recombinant CEMP1 protein in a human gingival fibroblast cell line. The purified protein (hrCEMP1) has a M(r) 50,000. Characterization of hrCEMP1 indicates that its secondary structure is mainly composed of beta-sheet (55%), where random coil and alpha helix conformations correspond to 35% and 10%, respectively. It was found that hrCEMP1 is N-glycosylated, phosphorylated and possesses strong affinity for hydroxyapatite. Even more important, our results show that hrCEMP1 plays a role during the biomineralization process by promoting octacalcium phosphate (OCP) crystal nucleation. These features make CEMP1 a very good candidate for biotechnological applications in order to achieve cementum and/or bone regeneration.


Assuntos
Calcificação Fisiológica , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Durapatita/química , Fibroblastos/metabolismo , Gengiva/citologia , Gengiva/metabolismo , Glicosilação , Humanos , Fosforilação , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
J Ethnopharmacol ; 225: 159-168, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29990521

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal plant Sedum oxypetalum Kunth (Crassulaceae), locally known as Jiote or in general Siempreviva (always alive) has been traditionally used by people of the Mexican community of Tenango del Valle as a home remedy to treat periodontal diseases, inducing teeth strengthening. Consequently, the aim of this work was to investigate its capacity directed to mineralized tissues regeneration. MATERIALS AND METHODS: The aerial parts of the plant were processed and its aqueous extract (AE) was chemically characterized. The AE and its components sedoheptulose and syngenite were tested for either osteogenic differentiation or mineral-nucleation induction respectively. RESULTS: The AE and one of its components (sedoheptulose) were shown to promote the proliferation and/or osteogenic differentiation by Human Periodontal Ligament-Derived Cells (hPDLs), while inducing the mineralization process. The AE also promoted the nucleation of octacalcium phosphate and its component syngenite, the hydroxyapatite crystals formation in vitro. CONCLUSION: The findings reported herein support the traditional use of S. oxypetalum due to its potential capacity to promote the regeneration of mineralized tissues.


Assuntos
Ligamento Periodontal/citologia , Extratos Vegetais/farmacologia , Sedum , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Osteogênese , Extratos Vegetais/análise , Sulfatos/análise , Sulfatos/farmacologia
19.
J Endocrinol ; 193(3): 493-504, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17535886

RESUMO

The key role of estrogens on osteoblastic cell function is well documented; however, the role of progesterone (P) and synthetic progestins remains controversial. While several reports indicate that P has no significant effects on bone cells, a number of clinical studies have shown that 19-norprogestins restore postmenopausal bone loss. The mechanisms by which 19-norprogestins induce estrogen-like effects on bone cells are not fully understood. To assess whether the actions of 19-norprogestins on osteoblasts are mediated by their non-phenolic metabolites, we studied the effects of norethisterone (NET), levonorgestrel (LNG), and two of their A-ring reduced derivatives upon cell proliferation and differentiation in neonatal rat osteoblasts. Osteoblast function was assessed by determining cell DNA, cell-associated osteocalcin and calcium content, alkaline phosphatase activity, and mineral deposition. P failed to induce changes on osteoblasts, while NET and LNG exerted a number of actions. The most striking finding was that the 3beta,5alpha- and 3alpha,5alpha-tetrahydro derivatives of NET and LNG induced osteoblast proliferation and differentiation with higher potency than those exerted by their parent compounds, mimicking the effects of estradiol. Interestingly, osteoblast differentiation and mineral deposition induced by NET and LNG were abolished by finasteride, a 5alpha-reductases inhibitor, while the potent effect on osteoblast proliferation induced by progestin derivatives was abolished by a steroidal antiestrogen. Results demonstrate that A-ring reduced derivatives of NET and LNG exhibit intrinsic estrogen-like potency on rat osteoblasts, offering a plausible explanation for the mechanism of action of 19-norprogestins in bone restoration in postmenopausal women and providing new insights for hormone replacement therapy research.


Assuntos
Terapia de Reposição de Estrogênios , Osteoblastos/metabolismo , Congêneres da Progesterona/farmacologia , Inibidores de 5-alfa Redutase , Animais , Calcificação Fisiológica , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Estradiol/análogos & derivados , Estradiol/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Feminino , Finasterida/farmacologia , Fulvestranto , Humanos , Levanogestrel/metabolismo , Levanogestrel/farmacologia , Noretindrona/metabolismo , Noretindrona/farmacologia , Osteoblastos/efeitos dos fármacos , Osteocalcina/metabolismo , Fenóis/metabolismo , Congêneres da Progesterona/metabolismo , Ratos , Ratos Wistar
20.
Bone ; 38(3): 409-19, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16263347

RESUMO

Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal regeneration is the lack of cementum markers. Here we report on the identification and characterization of one such differentially human expressed gene, termed "cementum protein-23" (CP-23) that appears to be periodontal ligament and cementum-specific. We screened human cementum tumor-derived cDNA libraries by transient expression in COS-7 cells and "panning" with a rabbit polyclonal antibody against a cementoblastoma conditioned media-derived protein (CP). One isolated cDNA, CP-23, was expressed in E. coli and polyclonal antibodies against the recombinant human CP-23 were produced. Expression of CP-23 protein by cells of the periodontium was examined by Northern blot and in situ hybridization. Expression of CP-23 transcripts in human cementoblastoma-derived cells, periodontal ligament cells, human gingival fibroblasts and alveolar bone-derived cells was determined by RT-PCR. Our results show that we have isolated a 1374-bp human cDNA containing an open reading frame that encodes a polypeptide with 247 amino acid residues, with a predicted molecular mass of 25.9 kDa that represents CP species. The recombinant human CP-23 protein cross-reacted with antibodies against CP and type X collagen. Immunoscreening of human periodontal tissues revealed that CP-23 gene product is localized to the cementoid matrix of cementum and cementoblasts throughout the entire surface of the root, cell subpopulations of the periodontal ligament as well as cells located paravascularly to the blood vessels into the periodontal ligament. Furthermore, 98% of putative cementoblasts and 15% of periodontal ligament cells cultured in vitro expressed CP-23 gene product. Cementoblastoma cells and periodontal ligament cells contained a 5.0 kb CP-23 mRNA. In situ hybridization showed strong expression of CP-23 mRNA on cementoblast, cell subpopulations of the periodontal ligament and cells located around blood vessels into the periodontal ligament. Our results demonstrate that CP-23 represents a novel, tissue-specific-gene product being expressed by periodontal ligament subpopulations and cementoblasts. These findings offer the possibility to determine the cellular and molecular events that regulate the cementogenesis process during root development. Furthermore, it might provide new venues for the design of translational studies aimed at achieving predictable new cementogenesis and regeneration of the periodontal tissues.


Assuntos
Clonagem Molecular , Cemento Dentário/química , Expressão Gênica , Imuno-Histoquímica , Proteínas/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Sequência de Bases , Códon de Terminação , DNA/genética , DNA Complementar/genética , Escherichia coli/genética , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas/química , Proteínas/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA