Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(9): 6591-6597, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29450431

RESUMO

Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t50, above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t50 agrees well with CCN measured t50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.

2.
Environ Sci Technol ; 50(20): 11137-11144, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27626639

RESUMO

Airborne particle emissions from wastewater treatment plants (WWTP) have been associated with health repercussions but particulate quantification studies are scarce. In this study, particulate matter (PM) number concentrations and size distributions in the ultrafine range (7-300 nm) were measured from two different sources: a laboratory-scale aerobic bioreactor and the activated sludge aeration basins at Orange County Sanitation District (OCSD). The relationships between wastewater parameters (total organic carbon (TOC), chemical oxygen demand (COD), and total suspended solids (TSS)), aeration flow rate and particle concentrations were also explored. A significant positive relationship was found between particle concentration and WWTP variables (COD: r(10) = 0.876, p <.001, TOC: r(10) = 0.664, p <.05, TSS: r(10) = 0.707, p <.05, aeration flow rate: r(8) = 0.988, p <.0001). A theoretical model was also developed from empirical data to compare real world WWTP aerosol number emission fluxes with laboratory data. Aerosol number fluxes at OCSD aerated basins (9.8 × 104 lbs/min·cm2) and the bioreactor (7.95 × 104 lbs/min·cm2) were calculated and showed a relatively small difference (19%). The ultrafine size distributions from both systems were consistent, with a mode of ∼48 nm. The average mass concentration (7.03 µg/cm3) from OCSD was relatively small compared to other urban sources. However, the in-tank average number concentration of airborne particles (14 480 lbs/cm3) was higher than background ambient concentrations.


Assuntos
Poluentes Atmosféricos , Águas Residuárias , Aerossóis , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado
3.
Environ Sci Technol ; 46(9): 5049-56, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22468877

RESUMO

Emissions from ocean-going vessels (OGVs) are a significant health concern for people near port communities. This paper reports the emission benefits for two mitigation strategies, cleaner engines and cleaner fuels, for a 2010 container vessel. In-use emissions were measured following International Organization for Standardization (ISO) protocols. The overall in-use nitrogen oxide (NO(x)) emission factor was 16.1 ± 0.1 gkW(-1) h(-1), lower than the Tier 1 certification (17 gkW(-1) h(-1)) and significantly lower than the benchmark value of 18.7 gkW(-1) h(-1) commonly used for estimating emission inventories. The in-use particulate matter (PM(2.5)) emission was 1.42 ± 0.04 gkW(-1) h(-1) for heavy fuel oil (HFO) containing 2.51 wt % sulfur. Unimodal (∼30 nm) and bimodal (∼35 nm; ∼75 nm) particle number size distributions (NSDs) were observed when the vessel operated on marine gas oil (MGO) and HFO, respectively. First-time emission measurements during fuel switching (required 24 nautical miles from coastline) showed that concentrations of sulfur dioxide (SO(2)) and particle NSD took ∼55 min to reach steady-state when switching from MGO to HFO and ∼84 min in the opposite direction. Therefore, if OGVs commence fuel change at the regulated boundary, then vessels can travel up to 90% of the distance to the port before steady-state values are re-established. The transient behavior follows a classic, nonlinear mixing function driven by the amount of fuel in day tank and the fuel consumption rate. Hence, to achieve the maximum benefits from a fuel change regulation, fuel switch boundary should be further increased to provide the intended benefits for the people living near the ports.


Assuntos
Poluição do Ar/prevenção & controle , Óleos Combustíveis , Navios , Emissões de Veículos , Algoritmos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA