Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802366

RESUMO

Myelodysplastic syndromes (MDS) arising in the context of inherited bone marrow failure syndromes (IBMFS) differ in terms of prognosis and treatment strategy compared to MDS occurring in the adult population without an inherited genetic predisposition. The main molecular pathways affected in IBMFS involve telomere maintenance, DNA repair, biogenesis of ribosomes, control of proliferation and others. The increased knowledge on the genes involved in MDS pathogenesis and the wider availability of molecular diagnostic assessment have led to an improvement in the detection of IBMFS genetic predisposition in MDS patients. A punctual recognition of these disorders implies a strict surveillance of the patient in order to detect early signs of progression and promptly offer allogeneic hematopoietic stem cell transplantation, which is the only curative treatment. Moreover, identifying an inherited mutation allows the screening and counseling of family members and directs the choice of donors in case of need for transplantation. Here we provide an overview of the most recent data on MDS with genetic predisposition highlighting the main steps of the diagnostic and therapeutic management. In order to highlight the pitfalls of detecting IBMFS in adults, we report the case of a 27-year-old man affected by MDS with an underlying telomeropathy.


Assuntos
Predisposição Genética para Doença/genética , Síndromes Mielodisplásicas/genética , Adulto , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Mutação/genética
2.
Mol Ther ; 26(10): 2523-2532, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30077612

RESUMO

Macrophage migration inhibitory factor (MIF) is elevated in patients with acute kidney injury (AKI) and is suggested as a potential predictor for renal replacement therapy in AKI. In this study, we found that MIF also plays a pathogenic role and is a therapeutic target for AKI. In a cisplatin-induced AKI mouse model, elevated plasma MIF correlated with increased serum creatinine and the severity of renal inflammation and tubular necrosis, whereas deletion of MIF protected the kidney from cisplatin-induced AKI by largely improving renal functional and histological injury, and suppressing renal inflammation including upregulation of cytokines such as interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF-α), IL-6, inducible nitric oxide synthase (iNOS), MCP-1, IL-8, and infiltration of macrophages, neutrophils, and T cells. We next developed a novel therapeutic strategy for AKI by blocking the endogenous MIF with an MIF inhibitor, ribosomal protein S19 (RPS19). Similar to the MIF-knockout mice, treatment with RPS19, but not the mutant RPS19, suppressed cisplatin-induced AKI. Mechanistically, we found that both genetic knockout and pharmacological inhibition of MIF protected against AKI by inactivating the CD74-nuclear factor κB (NF-κB) signaling. In conclusion, MIF is pathogenic in cisplatin-induced AKI. Targeting MIF with an MIF inhibitor RPS19 could be a promising therapeutic potential for AKI.


Assuntos
Injúria Renal Aguda/terapia , Inflamação/terapia , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Proteínas Ribossômicas/administração & dosagem , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Apoptose/efeitos dos fármacos , Cisplatino/efeitos adversos , Terapia Genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Knockout , NF-kappa B/genética , Necrose , Proteínas Ribossômicas/genética , Transdução de Sinais/efeitos dos fármacos
3.
Genes Chromosomes Cancer ; 57(11): 573-583, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30338612

RESUMO

Pathogenic germline variants in the BAP1 tumor suppressor gene can cause a cancer syndrome called BAP1 tumor predisposition syndrome (BAP1-TPDS), which is characterized by predisposition to mesothelioma, melanoma, renal cell carcinoma, basal cell carcinoma, and other tumors. Other genes that may predispose to mesothelioma are CDKN2A and DNA repair genes. Asbestos exposure has often been reported in patients with malignant pleural mesothelioma (MPM) and germline variants in BAP1, but this exposure has never been quantified. We aimed to search for germline variants in BAP1 among 25 new Italian probands with suspected BAP1-TPDS, summarize the prevalence of these variants in 39 Italian patients with familial MPM and other tumors recruited over a 5-year period, and compare cumulative asbestos exposure in 14 patients with MPM and pathogenic germline variants in BAP1, CDKN2A, or DNA repair genes with that of 67 patients without germline variants in 94 cancer-predisposing genes. We report here a new pathogenic germline variant in BAP1: c.783 + 2 T > C. The prevalence of pathogenic germline variants in BAP1 was 7.7% among patients with familial MPM (3/39). Patients with pathogenic germline variants in BAP1, CDKN2A, or DNA repair genes showed lower cumulative asbestos exposure than patients without germline variants in 94 cancer-predisposing genes (P = .00002). This suggests an interaction between genetic risk factors and asbestos in the development of mesothelioma.


Assuntos
Amianto/efeitos adversos , Exposição Ambiental/análise , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Mesotelioma/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adulto , Estudos de Coortes , Reparo do DNA/genética , Feminino , Humanos , Itália , Masculino , Mesotelioma/epidemiologia , Pessoa de Meia-Idade
4.
Hum Mutat ; 39(8): 1102-1111, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29766597

RESUMO

Diamond-Blackfan anemia (DBA) is a rare genetic hypoplasia of erythroid progenitors characterized by mild to severe anemia and associated with congenital malformations. Clinical manifestations in DBA patients are quite variable and genetic testing has become a critical factor in establishing a diagnosis of DBA. The majority of DBA cases are due to heterozygous loss-of-function mutations in ribosomal protein (RP) genes. Causative mutations are fairly straightforward to identify in the case of large deletions and frameshift and nonsense mutations found early in a protein coding sequence, but diagnosis becomes more challenging in the case of missense mutations and small in-frame indels. Our group recently characterized the phenotype of lymphoblastoid cell lines established from DBA patients with pathogenic lesions in RPS19 and observed that defective pre-rRNA processing, a hallmark of the disease, was rescued by lentiviral vectors expressing wild-type RPS19. Here, we use this complementation assay to determine whether RPS19 variants of unknown significance are capable of rescuing pre-rRNA processing defects in these lymphoblastoid cells as a means of assessing the effects of these sequence changes on the function of the RPS19 protein. This approach will be useful in differentiating pathogenic mutations from benign polymorphisms in identifying causative genes in DBA patients.


Assuntos
Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Linhagem Celular , Códon sem Sentido/genética , Biologia Computacional , DNA Complementar/genética , Mutação da Fase de Leitura/genética , Humanos , Mutação/genética , Fenótipo
5.
Haematologica ; 103(6): 949-958, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29599205

RESUMO

Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure disorder linked predominantly to ribosomal protein gene mutations. Here the European DBA consortium reports novel mutations identified in the RPL15 gene in 6 unrelated individuals diagnosed with DBA. Although point mutations have not been previously reported for RPL15, we identified 4 individuals with truncating mutations p.Tyr81* (in 3 of 4) and p.Gln29*, and 2 with missense variants p.Leu10Pro and p.Lys153Thr. Notably, 75% (3 of 4) of truncating mutation carriers manifested with severe hydrops fetalis and required intrauterine transfusions. Even more remarkable is the observation that the 3 carriers of p.Tyr81* mutation became treatment-independent between four and 16 months of life and maintained normal blood counts until their last follow up. Genetic reversion at the DNA level as a potential mechanism of remission was not observed in our patients. In vitro studies revealed that cells carrying RPL15 mutations have pre-rRNA processing defects, reduced 60S ribosomal subunit formation, and severe proliferation defects. Red cell culture assays of RPL15-mutated primary erythroblast cells also showed a severe reduction in cell proliferation, delayed erythroid differentiation, elevated TP53 activity, and increased apoptosis. This study identifies a novel subgroup of DBA with mutations in the RPL15 gene with an unexpected high rate of hydrops fetalis and spontaneous, long-lasting remission.


Assuntos
Anemia de Diamond-Blackfan/complicações , Anemia de Diamond-Blackfan/genética , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/etiologia , Mutação , Complicações Hematológicas na Gravidez , Proteínas Ribossômicas/genética , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/terapia , Apoptose/genética , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Análise Mutacional de DNA , Índices de Eritrócitos , Feminino , Genes p53 , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Gravidez , Biossíntese de Proteínas
6.
Mediators Inflamm ; 2017: 4049098, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769537

RESUMO

Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.


Assuntos
Inflamação/metabolismo , Osteopontina/metabolismo , Animais , Progressão da Doença , Humanos , Inflamação/genética , Metástase Neoplásica , Osteopontina/genética
7.
Br J Haematol ; 172(5): 782-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763766

RESUMO

Diamond-Blackfan anaemia (DBA) is an inherited disease characterized by pure erythroid aplasia that has been tagged as a 'ribosomopathy'. We report a multi-centre study focused on the analysis of rRNA processing of 53 Italian DBA patients using capillary electrophoresis analysis of rRNA maturation of the 40S and 60S ribosomal subunits. The ratio of 28S/18S rRNA was higher in patients with mutated ribosomal proteins (RPs) of the small ribosomal subunit. In contrast, patients with mutated RPs of the large ribosomal subunit (RPLs) had a lower 28S/18S ratio. The assay reported here would be amenable for development as a diagnostic tool.


Assuntos
Anemia de Diamond-Blackfan/diagnóstico , RNA Ribossômico/genética , Anemia de Diamond-Blackfan/genética , Estudos de Casos e Controles , Eletroforese Capilar/métodos , Deleção de Genes , Humanos , Mutação
8.
Eur J Haematol ; 96(4): 367-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26058344

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital pure red cell aplasia often associated with skeletal malformations. Mutations in ribosomal protein coding genes, mainly in RPS19, account for the majority of DBA cases. The molecular mechanisms underlying DBA pathogenesis are still not completely understood. Alternative spliced isoforms of FLVCR1 (feline leukemia virus subgroup C receptor 1) transcript coding for non-functional proteins have been reported in some DBA patients. Consistently, a phenotype very close to DBA has been described in animal models of FLVCR1 deficiency. FLVCR1 gene codes for two proteins: the plasma membrane heme exporter FLVCR1a and the mitochondrial heme exporter FLVCR1b. The coordinated expression of both FLVCR1 isoforms regulates an intracellular heme pool, necessary for proper expansion and differentiation of erythroid precursors. Here, we investigate the role of FLVCR1 isoforms in a cellular model of DBA. RPS19-downregulated TF1 cells show reduced FLVCR1a and FLVCR1b mRNA levels associated with heme overload. The downregulation of FLVCR1 isoforms affects cell cycle progression and apoptosis in differentiating K562 cells, a phenotype similar to DBA. Taken together, these data suggest that alteration of heme metabolism could play a role in the pathogenesis of DBA.


Assuntos
Regulação Leucêmica da Expressão Gênica , Heme/biossíntese , Proteínas de Membrana Transportadoras/genética , RNA Mensageiro/genética , Receptores Virais/genética , Proteínas Ribossômicas/genética , Processamento Alternativo , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Heme/agonistas , Heme/antagonistas & inibidores , Humanos , Células K562 , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/metabolismo
9.
Proteomics ; 14(20): 2286-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25069755

RESUMO

Diamond-Blackfan anemia, characterized by defective erythroid progenitor maturation, is caused in one-fourth of cases by mutations of ribosomal protein S19 (RPS19), which is a component of the ribosomal 40S subunit. Our previous work described proteins interacting with RPS19 with the aim to determine its functions. Here, two RPS19 mutants, R62W and R101H, have been selected to compare their interactomes versus the wild-type protein one, using the same functional proteomic approach that we employed to characterize RPS19 interactome. Mutations R62W and R101H impair RPS19 ability to associate with the ribosome. Results presented in this paper highlight the striking differences between the interactomes of wild-type and mutant RPS19 proteins. In particular, mutations abolish interactions with proteins having splicing, translational and helicase activity, thus confirming the role of RPS19 in RNA processing/metabolism and translational control. The data have been deposited to the ProteomeXchange with identifier PXD000640 (http://proteomecentral.proteomexchange.org/dataset/PXD000640).


Assuntos
Anemia de Diamond-Blackfan/genética , Mutação Puntual , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Ribossomos/genética , Biologia de Sistemas/métodos
10.
Am J Hematol ; 89(10): 985-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042156

RESUMO

Diamond Blackfan anemia (DBA), a syndrome primarily characterized by anemia and physical abnormalities, is one among a group of related inherited bone marrow failure syndromes (IBMFS) which share overlapping clinical features. Heterozygous mutations or single-copy deletions have been identified in 12 ribosomal protein genes in approximately 60% of DBA cases, with the genetic etiology unexplained in most remaining patients. Unlike many IBMFS, for which functional screening assays complement clinical and genetic findings, suspected DBA in the absence of typical alterations of the known genes must frequently be diagnosed after exclusion of other IBMFS. We report here a novel deletion in a child that presented such a diagnostic challenge and prompted development of a novel functional assay that can assist in the diagnosis of a significant fraction of patients with DBA. The ribosomal proteins affected in DBA are required for pre-rRNA processing, a process which can be interrogated to monitor steps in the maturation of 40S and 60S ribosomal subunits. In contrast to prior methods used to assess pre-rRNA processing, the assay reported here, based on capillary electrophoresis measurement of the maturation of rRNA in pre-60S ribosomal subunits, would be readily amenable to use in diagnostic laboratories. In addition to utility as a diagnostic tool, we applied this technique to gene discovery in DBA, resulting in the identification of RPL31 as a novel DBA gene.


Assuntos
Precursores de RNA , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico , Proteínas Ribossômicas , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Feminino , Humanos , Lactente , Células K562 , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
11.
Pediatr Blood Cancer ; 61(7): 1319-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24453067

RESUMO

Mutations in the hematopoietic transcription factor GATA-1 alter the proliferation/differentiation of hemopoietic progenitors. Mutations in exon 2 interfere with the synthesis of the full-length isoform of GATA-1 and lead to the production of a shortened isoform, GATA-1s. These mutations have been found in patients with Diamond-Blackfan anemia (DBA), a congenital erythroid aplasia typically caused by mutations in genes encoding ribosomal proteins. We sequenced GATA-1 in 23 patients that were negative for mutations in the most frequently mutated DBA genes. One patient showed a c.2T > C mutation in the initiation codon leading to the loss of the full-length GATA-1 isoform.


Assuntos
Anemia de Diamond-Blackfan/genética , Códon de Iniciação/genética , Fator de Transcrição GATA1/genética , Mutação Puntual , Feminino , Humanos , Masculino , Isoformas de Proteínas/genética
12.
Proteomics ; 13(7): 1220-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23412928

RESUMO

The biochemical phenotype of cells affected by ribosomal stress has not yet been studied in detail. Here we report a comparative proteomic analysis of cell lines silenced for the RPS19 gene versus cell lines transfected with scramble shRNA cells performed using the DIGE technology integrated to bioinformatics tools. Importantly, to achieve the broadest possible understanding of the outcome, we carried out two independent DIGE experiments using two different pH ranges, thus, allowing the identification of 106 proteins. Our data revealed the deregulation of proteins involved in cytoskeleton reorganization, PTMs, and translation process. A subset (26.9%) of these proteins is translated from transcripts that include internal ribosome entry site motifs. This supports the hypothesis that during ribosomal stress translation of specific messenger RNAs is altered.


Assuntos
Proteômica/métodos , Ribossomos/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Densitometria , Eletroforese em Gel de Poliacrilamida , Humanos , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas
13.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370676

RESUMO

According to the driver-passenger model for colorectal cancer (CRC), the tumor-associated microbiota is a dynamic ecosystem of bacterial species where bacteria with carcinogenic features linked to CRC initiation are defined as "drivers", while opportunistic bacteria colonizing more advanced tumor stages are known as "passengers". We reasoned that also gut microbiota-associated metabolites may be differentially enriched according to tumor stage, and be potential determinants of CRC development. Thus, we characterized the mucosa- and lumen-associated microbiota (MAM and LAM, respectively) and mucosa-associated metabolites in low- vs. high-grade dysplastic colon polyps from 78 patients. We show that MAM, obtained with a new biopsy-preserving approach, and LAM differ in composition and α/ß-diversity. By stratifying patients for polyp histology, we found that bacteria proposed as passengers by previous studies colonized high-grade dysplastic adenomas, whereas driver taxa were enriched in low-grade polyps. Furthermore, we report altered "mucosa-associated metabolite" levels in low- vs. high-grade groups. Integrated microbiota-metabolome analysis suggests the involvement of the gut microbiota in the production and consumption of these metabolites. Altogether, our findings support the involvement of bacterial species and associated metabolites in CRC mucosal homeostasis in a tumor-stage-specific manner. These distinct signatures may be used to distinguish low-grade from high-grade dysplastic polyps.

14.
Front Genet ; 13: 1045236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36579335

RESUMO

Introduction: Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by defective maturation of the erythroid progenitors in the bone marrow, for which treatment involves steroids, chronic transfusions, or hematopoietic stem cells transplantation. Diamond Blackfan anemia is caused by defective ribosome biogenesis due to heterozygous pathogenic variants in one of 19 ribosomal protein (RP) genes. The decreased number of functional ribosomes leads to the activation of pro-apoptotic pathways and to the reduced translation of key genes for erythropoiesis. Results and discussion: Here we characterized the phenotype of RPS26-deficiency in a cell line derived from human umbilical cord blood erythroid progenitors (HUDEP-1 cells). This model recapitulates cellular hallmarks of Diamond Blackfan anemia including: imbalanced production of ribosomal RNAs, upregulation of pro-apoptotic genes and reduced viability, and shows increased levels of intracellular calcium. Evaluation of the expression of erythroid markers revealed the impairment of erythroid differentiation in RPS26-silenced cells compared to control cells. Conclusions: In conclusion, for the first time we assessed the effect of RPS26 deficiency in a human erythroid progenitor cell line and demonstrated that these cells can be used as a scalable model system to study aspects of DBA pathophysiology that have been refractory to detailed investigation because of the paucity of specific cell types affected in this disorder.

15.
Eur J Cancer ; 163: 44-54, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032816

RESUMO

INTRODUCTION: Malignant pleural mesothelioma (MPM) is a tumour associated with asbestos exposure. Approximately, 10% of patients with MPM carry a germline pathogenic variant (PV), mostly in DNA repair genes, suggesting the occurrence of inherited predispositions. AIM: This article aimed to 1) search for new predisposing genes and assess the prevalence of PVs in DNA repair genes, by next-generation sequencing (NGS) analysis of germline DNA from 113 unselected patients with MPM and 2) evaluate whether these patients could be sensitive to tailored treatments. METHODS: NGS was performed using a custom panel of 107 cancer-predisposing genes. To investigate the response to selected drugs in conditions of DNA repair insufficiency, we created a three-dimensional-MPM cell model that had a defect in ataxia telangiectasia mutated (ATM), the master regulator of DNA repair. RESULTS: We identified PVs in approximately 7% of patients with MPM (8/113) and a new PV in BAP1 in a further patient with familial MPM. Most of these PVs were in genes involved or supposedly involved in DNA repair (BRCA1, BRIP1, CHEK2, SLX4, FLCN and BAP1). In vitro studies showed apoptosis induction in ATM-silenced/inhibited MPM spheroids treated with an enhancer of zeste homologue 2 inhibitor (tazemetostat). CONCLUSIONS: Overall these data suggest that patients with MPM and DNA repair insufficiency may benefit from this treatment, which induces synthetic lethality.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Reparo do DNA/genética , Células Germinativas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/patologia , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia
16.
Diagnostics (Basel) ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35885614

RESUMO

Germline mutations in the tumor suppressor gene BRCA1-associated protein-1 (BAP1) lead to BAP1 tumor predisposition syndrome (BAP1-TPDS), characterized by high susceptibility to several tumor types, chiefly melanoma, mesothelioma, renal cell carcinoma, and basal cell carcinoma. Here, we present the results of our ten-year experience in the molecular diagnosis of BAP1-TPDS, along with a clinical update and cascade genetic testing of previously reported BAP1-TPDS patients and their relatives. Specifically, we sequenced germline DNA samples from 101 individuals with suspected BAP1-TPDS and validated pathogenic variants (PVs) by assessing BAP1 somatic loss in matching tumor specimens. Overall, we identified seven patients (7/101, 6.9%) carrying six different germline BAP1 PVs, including one novel variant. Consistently, cascade testing revealed a total of seven BAP1 PV carriers. In addition, we explored the mutational burden of BAP1-TPDS tumors by targeted next-generation sequencing. Lastly, we found that certain tumors present in PV carriers retain a wild-type BAP1 allele, suggesting a sporadic origin of these tumors or a functional role of heterozygous BAP1 in neoplastic development. Altogether, our findings have important clinical implications for therapeutic response of BAP1-TPDS patients.

17.
Anal Chim Acta ; 1179: 338841, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34535255

RESUMO

The intestinal microbiota is composed of a large number of different bacteria that produce a variety of metabolites. Colorectal cancer, which typically develops from adenomatous polyps, is highly influenced by microbiota. Since a variety of molecular changes may occur as these polyps transform from benign tumor to malignant carcinoma, the ability to study the microbiota-produced metabolites can lead to new discoveries about the development and progression of this cancer. However, to address the complexity of the microbiota-produced molecules, novel methods are needed. To this aim, in the present work, we developed a high-throughput metabolomics method to capture the metabolic complexity of the microbiota metabolome adherent to adenomatous polyps and adenocarcinoma. For the first time, the method enables the simultaneous quantification of almost 300 metabolites, while preserving the integrity of the original sample. The metabolomics approach was analytically validated and had excellent performances in terms of recovery, linearity, specificity, intra- and inter-day precision, limits of detection, and quantification. Furthermore, the clinical potential of the method was demonstrated in adenoma collected for a colorectal adenoma study.


Assuntos
Pólipos Adenomatosos , Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Metaboloma
18.
Hum Mutat ; 31(12): 1269-79, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20960466

RESUMO

Diamond-Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype-phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database.


Assuntos
Anemia de Diamond-Blackfan/genética , Bases de Dados Genéticas , Mutação/genética , Ribossomos/genética , Anemia de Diamond-Blackfan/diagnóstico , Sequência de Bases , Estudos de Associação Genética , Humanos , Dados de Sequência Molecular , Mutagênese/genética , Proteínas Ribossômicas/genética
19.
Haematologica ; 95(2): 206-13, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19773262

RESUMO

BACKGROUND: Diamond-Blackfan anemia is a rare, pure red blood cell aplasia of childhood due to an intrinsic defect in erythropoietic progenitors. About 40% of patients display various malformations. Anemia is corrected by steroid treatment in more than 50% of cases; non-responders need chronic transfusions or stem cell transplantation. Defects in the RPS19 gene, encoding the ribosomal protein S19, are the main known cause of Diamond-Blackfan anemia and account for more than 25% of cases. Mutations in RPS24, RPS17, and RPL35A described in a minority of patients show that Diamond-Blackfan anemia is a disorder of ribosome biogenesis. Two new genes (RPL5, RPL11), encoding for ribosomal proteins of the large subunit, have been reported to be involved in a considerable percentage of patients. DESIGN AND METHODS: In this genotype-phenotype analysis we screened the coding sequence and intron-exon boundaries of RPS14, RPS16, RPS24, RPL5, RPL11, and RPL35A in 92 Italian patients with Diamond-Blackfan anemia who were negative for RPS19 mutations. RESULTS: About 20% of the patients screened had mutations in RPL5 or RPL11, and only 1.6% in RPS24. All but three mutations that we report here are new mutations. No mutations were found in RPS14, RPS16, or RPL35A. Remarkably, we observed a higher percentage of somatic malformations in patients with RPL5 and RPL11 mutations. A close association was evident between RPL5 mutations and craniofacial malformations, and between hand malformations and RPL11 mutations. CONCLUSIONS: Mutations in four ribosomal proteins account for around 50% of all cases of Diamond-Blackfan anemia in Italian patients. Genotype-phenotype data suggest that mutation screening should begin with RPL5 and RPL11 in patients with Diamond-Blackfan anemia with malformations.


Assuntos
Anemia de Diamond-Blackfan/genética , Mutação , Proteínas Ribossômicas/genética , Anemia de Diamond-Blackfan/patologia , Linhagem Celular , Estudos de Coortes , Estudos de Associação Genética , Testes Genéticos , Genótipo , Humanos , Itália , Fenótipo
20.
Pediatr Blood Cancer ; 55(3): 550-3, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20658629

RESUMO

Dyskeratosis congenita (DC) is a genetically heterogeneous syndrome characterized by reticular skin pigmentation, nail dystrophy, mucosal leukoplakia, short telomeres, and a predisposition to bone marrow failure and malignancy. Patients carrying mutations in TERT show a wide clinical spectrum of abnormalities, including classical DC, isolated bone marrow failure and lung fibrosis. Here, we report the clinical description and biological analysis of a patient with compound heterozygosity for two new missense mutations in TERT (V96L and V119L). Both mutations segregate with a short telomere phenotype, though only V96L segregates with clinical signs of DC.


Assuntos
Anemia Aplástica/genética , Heterozigoto , Mutação de Sentido Incorreto , Telomerase/genética , Criança , Disceratose Congênita/genética , Humanos , Masculino , Análise de Sequência de DNA , Telômero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA