Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Top Microbiol Immunol ; 436: 165-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243844

RESUMO

Macrophages display an array of activation phenotypes depending on the activation signal and the cellular microenvironment. The type and magnitude of the response depend on signaling molecules as well as on the epigenetic and metabolic status of the cells at the time of activation. The AKT family of kinases consists of three isoforms encoded by independent genes possessing similar functions and structures. Generation of research tools such as isoform-specific gene deletion mutant mice and cells and isoform-specific antibodies has allowed us to understand the role of each kinase isoform in macrophage activation and homeostasis. This chapter discusses the current evidence on the role of AKT kinases in macrophage activation, polarization, and homeostasis, highlighting the gaps in knowledge and future challenges in the field.


Assuntos
Ativação de Macrófagos , Proteínas Proto-Oncogênicas c-akt , Animais , Macrófagos , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Mar Drugs ; 21(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367668

RESUMO

Obesity and type 2 diabetes are characterized by low-grade systemic inflammation and glucose intolerance, which can be partially controlled with nutritional interventions. Protein-containing nutritional supplements possess health-promoting benefits. Herein, we examined the effect of dietary supplementation with protein hydrolysates derived from fish sidestreams on obesity and diabetes, utilizing a mouse model of High-Fat Diet-induced obesity and type 2 diabetes. We examined the effect of protein hydrolysates from salmon and mackerel backbone (HSB and HMB, respectively), salmon and mackerel heads (HSH and HMH, respectively), and fish collagen. The results showed that none of the dietary supplements affected weight gain, but HSH partially suppressed glucose intolerance, while HMB and HMH suppressed leptin increase in the adipose tissue. We further analyzed the gut microbiome, which contributes to the metabolic disease implicated in the development of type 2 diabetes, and found that supplementation with selected protein hydrolysates resulted in distinct changes in gut microbiome composition. The most prominent changes occurred when the diet was supplemented with fish collagen since it increased the abundance of beneficial bacteria and restricted the presence of harmful ones. Overall, the results suggest that protein hydrolysates derived from fish sidestreams can be utilized as dietary supplements with significant health benefits in the context of type 2 diabetes and diet-induced changes in the gut microbiome.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Intolerância à Glucose , Resistência à Insulina , Camundongos , Animais , Intolerância à Glucose/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Camundongos Obesos , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Suplementos Nutricionais , Dieta Hiperlipídica/efeitos adversos , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
3.
Mar Drugs ; 19(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071180

RESUMO

Inflammatory bowel disease is characterized by extensive intestinal inflammation, and therapies against the disease target suppression of the inflammatory cascade. Nutrition has been closely linked to the development and suppression of inflammatory bowel disease, which to a large extent is attributed to the complex immunomodulatory properties of nutrients. Diets containing fish have been suggested to promote health and suppress inflammatory diseases. Even though most of the health-promoting properties of fish-derived nutrients are attributed to fish oil, the potential health-promoting properties of fish protein have not been investigated. Fish sidestreams contain large amounts of proteins, currently unexploited, with potential anti-inflammatory properties, and may possess additional benefits through bioactive peptides and free amino acids. In this project, we utilized fish protein hydrolysates, based on mackerel and salmon heads and backbones, as well as flounder skin collagen. Mice fed with a diet supplemented with different fish sidestream-derived protein hydrolysates (5% w/w) were exposed to the model of DSS-induced colitis. The results show that dietary supplements containing protein hydrolysates from salmon heads suppressed chemically-induced colitis development as determined by colon length and pro-inflammatory cytokine production. To evaluate colitis severity, we measured the expression of different pro-inflammatory cytokines and chemokines and found that the same supplement suppressed the pro-inflammatory cytokines IL-6 and TNFα and the chemokines Cxcl1 and Ccl3. We also assessed the levels of the anti-inflammatory cytokines IL-10 and Tgfb and found that selected protein hydrolysates induced their expression. Our findings demonstrate that protein hydrolysates derived from fish sidestreams possess anti-inflammatory properties in the model of DSS-induced colitis, providing a novel underexplored source of health-promoting dietary supplements.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Peixes , Hidrolisados de Proteína/uso terapêutico , Resíduos , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Citocinas/sangue , Citocinas/genética , Sulfato de Dextrana , Suplementos Nutricionais , Feminino , Indústria Alimentícia , Camundongos Endogâmicos C57BL , Hidrolisados de Proteína/farmacologia
4.
Mar Drugs ; 19(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064922

RESUMO

Metabolic syndrome-related diseases affect millions of people worldwide. It is well established that changes in nutritional habits and lifestyle can improve or prevent metabolic-related pathologies such as type-2 diabetes and obesity. Previous reports have shown that nutritional supplements have the capacity to limit glucose intolerance and suppress diabetes development. In this study, we investigated the effect of dietary supplementation with fish-derived extracts on obesity and type 2 diabetes and their impact on gut microbial composition. We showed that nutritional supplements containing Fish Complex (FC), Fish Complex combined with Cod Powder (FC + CP), or Cod Powder combined with Collagen (CP + C) improved glucose intolerance, independent of abdominal fat accumulation, in a mouse model of diet-induced obesity and type 2 diabetes. In addition, collagen-containing supplements distinctly modulate the gut microbiome in high-fat induced obesity in mice. Our results suggest that fish-derived supplements suppress diet-induced type 2 diabetes, which may be partly mediated through changes in the gut microbiome. Thus, fish-derived supplements and particularly the ones containing fish collagen have potential beneficial properties as dietary supplements in managing type 2 diabetes and metabolic syndrome via modulation of the gut microbiome.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Peixes , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Obesidade , Extratos de Tecidos/farmacologia , Gordura Abdominal/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/microbiologia , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/complicações , Extratos de Tecidos/isolamento & purificação , Extratos de Tecidos/uso terapêutico
5.
Mar Drugs ; 19(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356821

RESUMO

Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.


Assuntos
Colágeno/efeitos dos fármacos , Hidrolisados de Proteína/farmacologia , Salmão , Cicatrização/efeitos dos fármacos , Animais , Quimiocinas/metabolismo , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Hidrolisados de Proteína/administração & dosagem
6.
Cell Rep ; 43(6): 114336, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38852157

RESUMO

Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Mitocôndrias , Reprodução , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Mitocôndrias/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Masculino , Estresse Fisiológico , Feminino
7.
iScience ; 25(8): 104793, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992087

RESUMO

Borrelia burgdorferi (Bb), a vector-borne bacterial pathogen and the causative agent of Lyme disease, can spread to distant tissues in the human host by traveling in and through monolayers of endothelial cells (ECs) lining the vasculature. To examine whether Bb alters the physical forces of ECs to promote its dissemination, we exposed ECs to Bb and observed a sharp and transient increase in EC traction and intercellular forces, followed by a prolonged decrease in EC motility and physical forces. All variables returned to baseline at 24 h after exposure. RNA sequencing analysis revealed an upregulation of innate immune signaling pathways during early but not late Bb exposure. Exposure of ECs to heat-inactivated Bb recapitulated only the early weakening of EC mechanotransduction. The differential responses to live versus heat-inactivated Bb indicate a tight interplay between innate immune signaling and physical forces in host ECs and suggest their active modulation by Bb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA