RESUMO
Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95â%, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3â% and ANI 89.4â%), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6â% and ANI 81.5â%). Both strains were psychrotolerant with an optimum growth temperature of 25â°C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15â:â0 and anteiso-C15â:â0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3âmol% for strain F-29T and 33.4âmol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Peixes , Flavobacterium , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Animais , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Peixes/microbiologia , Genoma Bacteriano , Aquicultura , FosfatidiletanolaminasRESUMO
During the course of isolating novel actinobacteria producing bioactive metabolites, strain BG9HT was obtained from an arid soil sample in Erzurum, Turkey. Pairwise sequence comparisons for 16S rRNA gene sequences showed the strain was a member of the genus Streptomyces and it shared the highest 16S rRNA gene sequence identity of 99.7% with Streptomyces huasconensis HST28T. Comparative genome analyses based on digital DNA-DNA hybridization and average nucleotide identity revealed that strain BG9HT represents a novel species within the genus Streptomyces. The polyphasic analysis also confirmed that the strain has typical characteristics of the genus Streptomyces. The strain has LL-diaminopimelic acid as diagnostic amino acid, and galactose, mannose and trace amounts of glucose and ribose as whole-cell sugars. Polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, unidentified aminolipids, phospholipids and lipids. Major isoprenoid quinones were MK-9(H6), MK-9(H4), and MK-9(H8). Its genome size is approximately 7.2 Mb with 71.2% G+C content. The methanolic extract of strain BG9HT showed antimicrobial and cytotoxic activities. Further genomic analyses of strain BG9HT confirmed its high potential to produce novel secondary metabolites. On the basis of phenotypic and phylogenetic analyses, strain BG9HT represents a novel species of the genus Streptomyces, for which Streptomyces anatolicus sp. nov. is proposed, and it holds high promise for novel biosynthetic metabolites of value to the biopharmaceutical industry. We also propose Streptomyces nashvillensis as a later heterotypic synonym of Streptomyces tanashiensis as a result obtained through analysis of overall genome relatedness indices.
Assuntos
Actinobacteria , Anti-Infecciosos , Antineoplásicos , Streptomyces , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética , DNARESUMO
The strain M-43T was isolated from the Oncorhynchus mykiss from a fish farm in Mugla, Turkey. Pairwise 16S rRNA gene sequence analysis was used to identify strain M-43T. The strain was a member of the genus Myroides sharing the highest 16S rRNA gene sequence identity levels of 98.7%, 98.3%, and 98.3% with the type strains of M. profundi D25T, M. odoratimimus subsp. odoratimimus CCUG 39352T and M. odoratimimus subsp. xuanwuensis DSM27251T, respectively. A polyphasic taxonomic approach including whole genome-based analyses was employed to confirm the taxonomic provenance of strain M-43T within the genus Myroides. The overall genome relatedness indices (OGRI) for strain M-43T compared with its most closely related type strains M. odoratimimus subsp. xuanwuensis DSM 27251T, M. profundi D25T, and M. odoratimimus subsp. odoratimimus ATCC BAA-634T, were calculated as 25.3%, 25.1%, and 25% for digital DNA-DNA hybridization (dDDH), 83.3%, 83.6%, and 83.4% for average nucleotide identity (ANI) analyses, respectively. The OGRI values between strain M-43T and its close neighbors confirmed that the strain represents a novel species in the genus Myroides. The DNA G + C content of the strain is 33.7%. The major fatty acids are iso-C15:0 and summed feature 9 (iso-C17:1 ω9c and/or 10-methyl C16:0). The predominant polar lipids are phosphatidylethanolamine, an amino-lipid and five unidentified lipids. The major respiratory quinone is MK-6. Chemotaxonomic and phylogenomic analyses of this isolate confirmed that the strain represents a novel species for which the name Myroides oncorhynchi sp. nov. is proposed, with M-43T as the type strain (JCM 34205T = KCTC 82265T).
Assuntos
Flavobacteriaceae , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Flavobacteriaceae/genética , Bactérias Aeróbias/genética , Ácidos Graxos/análise , Genômica , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem BacterianaRESUMO
Silver nanoparticles (AgNPs) have gained interest as an alternative pharmaceutical agent because of antimicrobial resistance and drug toxicity. Considering the increasing request, eco-friendly, sustainable, and cost-effective synthesis of versatile AgNPs has become necessary. In this study, green-made AgNPs were successfully synthesized using Micromonospora sp. SH121 (Mm-AgNPs). Synthesis was verified by surface plasmon resonance (SPR) peak at 402 nm wavelength in the UV-Visible (UV-Vis) absorption spectrum. Scanning electron microscopy (SEM) analysis depicted that Mm-AgNPs were in the size range of 10-30 nm and spherical. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of bioactive molecules on the surface of nanoparticles. The X-ray diffraction (XRD) analysis revealed the face-centered cubic (fcc) structure of the Mm-AgNPs. Their polydispersity index (PDI) and zeta potential were 0. 284 and -35.3 mV, respectively. Mm-AgNPs (4-32 µg/mL) exhibited strong antimicrobial activity against Bacillus cereus, Enterococcus faecalis, Enterococcus hirae, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas putida, Staphylococcus epidermidis, Streptococcus pneumoniae, and Aspergillus flavus. Mm-AgNPs partially inhibited the biofilm formation in Acinetobacter baumannii, E. coli, K. pneumoniae, and Pseudomonas aeruginosa. Furthermore, results showed that low concentrations of Mm-AgNPs (1 and 10 µg/mL) caused higher cytotoxicity and apoptosis in DU 145 cells than human fibroblast cells. Based on the results, Mm-AgNPs have an excellent potential for treating infectious diseases and prostate cancer.
Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Micromonospora , Humanos , Antibacterianos/farmacologia , Prata/química , Nanopartículas Metálicas/química , Escherichia coli , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Biofilmes , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
A strain, S-1T was isolated from rainbow trout (Oncorhynchus mykiss) exhibiting clinical symptoms of lens atrophy, inappetence, visual impairment and growth retardation. The strain was identified as representing a member of the genus Shewanella on the basis of the results of 16S rRNA gene sequence analysis. The neighbor-joining phylogenetic tree based on 16S rRNA gene sequences indicated that S-1T clustered with Shewanella putrefaciens JCM 20190T, Shewanella profunda DSM 15900T, and Shewanella hafniensis P010T, sharing 99.3, 98.8 and 87.7% 16S rRNA gene similarities, respectively. A polyphasic taxonomic approach including phenotypic, chemotaxonomic, and genomic characterization was employed to ascertain the taxonomic position of S-1T within the genus Shewanella. The overall genome relatedness indices (OGRI) for S-1T compared with the most closely related type strains S. hafniensis ATCC BAA-1207T, Shewanella baltica NCTC 10735T, S. putrefaciens ATCC 8071T and S. profunda DSM 15900T were calculated as 40.8, 40.1, 28.5 and 27.3% for digital DNA-DNA hybridization (dDDH), and 91.6, 91.0, 86.3 and 85.1% for average nucleotide identity (ANI), respectively. OGRI values between S-1T and its close neighbours confirmed that the strain represents a novel species in the genus Shewanella.The DNA G+C content of the strain is 45.2%. Major fatty acids were C17 : 1ω8c, C15 : 0iso, and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). The predominant polar lipids were phosphatidylethanolamine, phospholipid, amino-phospholipid and unidentified lipids. The major respiratory quinones were ubiquinone-8, ubiquinone-7 and menaquinone-7. Chemotaxonomic and phylogenomic analyses of this isolate confirmed that the strain represents a novel species for which the name Shewanella oncorhynchi sp. nov. is proposed, with S-1T as the type strain (JCM 34183T= KCTC 82249T).
Assuntos
Oncorhynchus mykiss , Shewanella , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , UbiquinonaRESUMO
Two yellow-pigmented isolates, F-60T and F-392, were isolated from the internal organs of an apparently healthy rainbow trout (Oncorhynchus mykiss). The strains were identified as members of the genus Flavobacterium based on the results of 16S rRNA gene sequence analysis. Strains F-60T and F-392 had the highest 16S rRNA gene sequence identity level of 97.4â% to the type strain of Flavobacterium crassostreae LPB0076T. A polyphasic taxonomic approach including phenotypic, chemotaxonomic and genomic characterization was employed to ascertain the taxonomic position of the strains within the genus Flavobacterium. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity based on blast (ANIb) values for strains F-60T and F-392 were calculated as 100â%. However, dDDH and ANI analyses between the strains and their close neighbours confirmed that both strains represent a novel species in the genus Flavobacterium. The strains shared the highest dDDH and ANIb levels of 23.3 and 77.9%, respectively, with the type strain of Flavobacterium frigidarium DSM 17623T while those values for F. crassostreae LPB0076T were obtained as 21.4-21.5â% and 76.3â%. The DNA G+C content of the strains was 34.5 mol%. Chemotaxonomic and phylogenomic analyses of these isolates confirmed that both strains are representatives of a novel species for which the name Flavobacterium muglaense sp. nov. is proposed, with F-60T as the type strain (=JCM 34196T=KCTC 82256T).
Assuntos
Flavobacterium/classificação , Oncorhynchus mykiss/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Isolation of novel actinobacteria from unexplored habitats as potential sources of novel drug leads has utmost importance. During the course of screening arid soil samples for novel actinobacteria, strain H3C3T was isolated from Malatya, Turkey and its taxonomic position was revealed by a genome-based polyphasic approach. Pairwise sequence comparison of the 16S rRNA gene showed that the strain is closely related to Actinomadura fibrosa JCM 9371T with sequence identity level of 99.0%. Comparative genome analyses based on digital DNA-DNA hybridization and average nucleotide identity indicated that strain H3C3T represents a novel species within the genus Actinomadura. The strain has typical characteristics of the genus Actinomadura, i.e. meso-diaminopimelic acid as diagnostic amino acid; galactose, glucose, madurose and ribose as whole-cell sugars. Major menaquinones detected were MK-9(H6), MK-9(H8) and polar lipids were diphosphatidylglycerol, phosphatidylinositol, glycophospholipid and unknown phospholipid and lipids. Its genome size is approximately 10.2 Mb with G+C content of 71.6%. Further genomic analyses of strain H3C3T indicated its high potential for novel biosynthetic gene clusters coding for various chemical structures. On the basis of phenotypic and phylogenetic analyses, strain H3C3T represents a novel species of the genus Actinomadura, for which Actinomadura rubrisoli sp. nov. is proposed, and it holds high promise for novel biosynthetic metabolites of value to biopharmaceutical industry.
Assuntos
Actinobacteria , Actinomadura , Actinobacteria/genética , Técnicas de Tipagem Bacteriana , Parede Celular/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Genômica , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2RESUMO
During a study to isolate such actinobacteria with unique metabolic potential, a novel actinobacterium, designated KC333T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of the strain was investigated using a polyphasic approach. Phylogenetic analysis of the 16S rRNA gene sequence showed that the strain was most closely related to Nonomuraea terrae CH32T (99.0% sequence similarity), Nonomuraea maritima FXJ7.203 T (98.9%), Nonomuraea candida HMC10T (98.7%) and Nonomuraea gerenzanensis ATCC 39727 T (98.6%), and is therefore considered to represent a member of the genus Nonomuraea. However, the average nucleotide identity and digital DNA-DNA hybridization based on whole-genome sequences between strain KC333T and close relatives demonstrated that it represents a novel species of the genus Nonomuraea. The major cellular fatty acids of strain KC333T were iso-C16:â0, C17:0 10-methyl and iso-C16:â0 2OH. Strain KC333T contained meso-diaminopimelic, mannose, madurose and ribose in the cell-wall peptidoglycan. The predominant menaquinones were MK-9(H4) and MK-9(H6). The genome size of strain KC333T is approximately 9.86 Mb, and the genomic DNA G + C content of the strain is 71.3%. In addition to the polyphasic characterisation, comprehensive genome analysis for gene clusters encoding carbohydrate-active enzymes and bioactive secondary metabolites as well as CRISPR-associated sequences revealed the high biotechnological potential of the strain. Based on evidence collected from the genotypic, phenotypic, and phylogenetic analyses, a novel species, Nonomuraea aridisoli sp. nov. is proposed with KC333T (= DSM 107062 T = JCM 32584 T = KCTC 49111 T) as the type strain.
Assuntos
Actinobacteria , Solo , Actinobacteria/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2RESUMO
During the course of isolating rare actinobacteria from unexplored habitats, strain CH32T was obtained from an arid soil sample in eastern Anatolia, Turkey. Polyphasic characterization and comprehensive genome analyses showed that the strain is a member of the genus Nonomuraea and it is closely related to Nonomuraea gerenzanensis ATCC 39727T, Nonomuraea polychroma DSM 43925T and Nonomuraea maritima FXJ7.203T with gene identity level of 98.7%, 98.2% and 98.1%, respectively. The whole-cell hydrolysates contain meso-diaminopimelic acid as diagnostic diaminoacid and glucose, ribose, galactose, mannose and madurose as whole cell sugars. The predominant menaquinones are MK-9(H4), MK-9(H6) and MK-9(H2) while MK-9 exists as minor component. The polar lipid profile consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, glycolipid, glycophospholipids, phospholipids and unidentified lipids. The major cellular fatty acids are iso-C16:0 and C17:0 10-methyl. The total genome size is about 9.6 Mb and the G + C content is 71.0%. The genome contains biosynthetic gene clusters encoding for terpenes, siderophores, a type III polyketide synthase, a non-ribosomal polypeptide synthetase and a bacteriocin. The genome-based comparisons of the strain with its phylogenetic neighbours, as indicated by digital DNA-DNA hybridization and average nucleotide identity analyses, reveal that strain CH32T (= JCM 33876T = KCTC 49368T) is a novel member of the genus Nonomuraea, for which Nonomuraea terrae sp. nov. is proposed.
Assuntos
Actinomycetales/classificação , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/genética , Actinomycetales/química , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Composição de Bases , Ácidos Graxos/análise , Genoma Bacteriano/genética , Fosfolipídeos/análise , Filogenia , Solo/química , TurquiaRESUMO
A novel, Gram-stain-positive bacterium, designated KC615T, was isolated from desert soil which was collected from the Karakum Desert, Turkmenistan. Phylogenetic analysis based on an almost-complete 16S rRNA gene sequence showed that isolate KC615T formed a monophyletic clade with Shimazuella kribbensis KCTC 9933T, sharing 98.2% similarity and polyphasic taxonomic studies confirmed the affiliation of the strain to the genus Shimazuella. The cell-wall peptidoglycan contained meso-diaminopimelic acid. Whole-cell hydrolysates contained ribose and glucose. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and hydroxy-phosphatidylethanolamine. The predominant menaquinones (> 10%) were MK-9(H4) and MK-10(H4). Major fatty acids were anteiso-C15:0, C20:0 and C18:0. The genomic DNA G + C content observed for strain KC615T was 38.5 mol%. Based on 16S rRNA gene similarity, DNA-DNA hybridization value, chemotaxonomic characteristics and differential physiological properties, strain KC615T is considered to represent a novel species within the genus Shimazuella, for which the name Shimazuella alba sp. nov. is proposed. The type strain is KC615T (= JCM 33532T = CGMCC 4.7616T).
Assuntos
Bacillales/classificação , Filogenia , Microbiologia do Solo , Bacillales/genética , Bacillales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Clima Desértico , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Peptidoglicano/genética , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , TurcomenistãoRESUMO
In recent years, the results of genome-based phylogenetic analyses have contributed to microbial systematics by increasing the availability of sequenced microbial genomes. Therefore, phylogenomic analysis within large taxa in the phylum Actinobacteria has appeared as a useful tool to clarify the taxonomic positions of ambiguous groups. In this study, we provide a revision of the actinobacterial family Streptosporangiaceae using a large collection of genome data and phylogenomics approaches. The phylogenomic analyses included the publicly available genome data of the members of the family Streptosporangiaceae and the state-of-the-art tools are used to infer the taxonomic affiliation of these species within the family. By comparing genome-based and 16S rRNA gene-based trees, as well as pairwise genome comparisons, the recently described genera Spongiactinospora and Desertactinospora are combined in the genus Spongiactinospora. In conclusion, a comprehensive phylogenomic revision of the family Streptosporangiaceae is proposed.
Assuntos
Actinobacteria/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genoma Bacteriano , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
An isolate, 13K206T, with typical morphological characteristics of the genus Micromonospora was obtained during a study searching for novel actinobacteria with biosynthetic potential from the Karakum Desert. A polyphasic approach was adopted to determine taxonomic affiliation of the strain. The strain showed chemotaxonomical properties consistent with its classification in the genus Micromonospora such as meso- and 3-OH-A2pm in the cell-wall peptidoglycan, xylose in whole-cell hydrolysate and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain was closely related to 'Micromonospora spongicola' S3-1T, Micromonospora nigra DSM 43818T and Micromonospora yasonensis DS3186T with sequence similarities of 98.6, 98.5 and 98.4 %, respectively. Digital DNA-DNA hybridization and average nucleotide identity analyses in addition to gyrB gene analysis confirmed the assignment of the strain to a novel species within the genus Micromonospora for which the name Micromonospora deserti sp. nov. is proposed. The type strain is 13K206T (=JCM 32583T=DSM 107532T). The DNA G+C content of the type strain is 72.4 mol%.
Assuntos
Clima Desértico , Micromonospora/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Micromonospora/isolamento & purificação , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , TurcomenistãoRESUMO
Three isolates, 5K138T, 8K307T and KC603T, with typical morphological characteristics of members of the genus Jiangella were obtained during a study searching for novel actinobacteria with biosynthetic potential from the Karakum Desert. A polyphasic approach was adopted to determine taxonomic affiliations of the strains. The strains showed chemotaxonomic properties consistent with their classification as representing members of the genus Jiangella such as ll-diaminopimelic acid in the cell wall peptidoglycan, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as major polar lipids as well as MK-9(H4) as a major menaquinone. Pairwise sequence comparisons of the 16S rRNA genes showed that the strains were closely related to Jiangella alba DSM 45237T, Jiangella rhizosphaerae NEAU-YY265T and Jiangella mangrovi 3SM4-07T with higher than 99â% sequence identities. However, a combination of phenotypic and phylogenetic approaches as well as genome-based comparative analyses confirmed the taxonomic positions of these strains as representing distinct species within the genus Jiangella. Therefore, strains 5K138T, 8K307T and KC603T should each be classified as representing a novel species within the genus Jiangella, for which the names Jiangella asiatica sp. nov., Jiangella aurantiaca sp. nov. and Jiangella ureilytica sp. nov. are proposed, respectively. The type strains of the proposed novel species are as follows: Jiangella asiatica 5K138T (=JCM 33518T=CGMCC 4.7672T), Jiangella aurantiaca 8K307T (=JCM 33519T=CGMCC 4.7621T) and Jiangella ureilytica KC603T (=JCM 33520T=CGMCC 4.7618T).
Assuntos
Actinobacteria/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turcomenistão , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A novel actinobacterial strain, designated 13K301T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of strain 13K301T was revealed by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain 13K301T belongs to the genus Streptomyces and had highest sequence similarity to 'Streptomyces qaidamensis' S10T (99.2 %), Streptomyces flavovariabilis NRRL B-16367T (98.9 %) and Streptomyces phaeoluteigriseus DSM 41896T (98.8 %), but the strain formed a distinct clade in the phylogenetic tree. The DNA-DNA relatedness and average nucleotide identity values as well as evolutionary distances based on multilocus (atpD, gyrB, recA, rpoB and trpB) sequences between strain 13K301T and closely related type strains were significantly lower than the recommended threshold values. The cell wall contained ll-diaminopimelic acid and the whole-cell hydrolysates were glucose and ribose. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were determined as the predominant polar lipids. The major menaquinones were identified as MK-9(H8) and MK-9(H6). On the basis of these genotypic and phenotypic data, it is proposed that strain 13K301T should be classified as representative of a novel species of the genus Streptomyces, for which the name Streptomyces cahuitamycinicus sp. nov. is proposed. The type strain is 13K301T (=DSM 106873T=KCTC 49110T). In addition, the whole genome-based comparisons as well as the multilocus sequence analysis revealed that the type strains of Streptomyces galilaeus and Streptomyces bobili belong to a single species. It is, therefore, proposed that S. galilaeus be recognised as a heterotypic synonym of S. bobili for which an emended description is given.
Assuntos
Clima Desértico , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação , Turcomenistão , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A novel Gram-stain-positive, rod-shaped, endospore-forming, motile, aerobic bacterium, designated as P2T, was isolated from a hot spring water sample collected from Ilica-Erzurum, Turkey. Phylogenetic analyses based on 16S rRNA gene sequence comparisons affiliated strain P2T with the genus Bacillus, and the strain showed the highest sequence identity to Bacillus azotoformans NBRC 15712T (96.7â%). However, the pairwise sequence comparisons of the 16S rRNA genes revealed that strain P2T shared only 94.7â% sequence identity with Bacillus subtilis subsp. subtilis NCIB 3610T, indicating that strain P2T might not be a member of the genus Bacillus. The digital DNA-DNA hybridization and average nucleotide identity values between strain P2T and B. azotoformans NBRC 15712T were 19.8 and 74.2â%, respectively. The cell-wall peptidoglycan of strain P2T contained meso-diaminopimelic acid. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminophospholipid, five unidentified phospholipids and two unidentified lipids while the predominant isoprenoid quinone was MK-7. The major fatty acids were iso-C15â:â0 and iso-C16â:â0. The draft genome of strain P2T was composed of 82 contigs and found to be 3.5 Mb with 36.1âmol% G+C content. The results of phylogenomic and phenotypic analyses revealed that strain P2T represents a novel genus in the family Bacillaceae, for which the name Calidifontibacillus erzurumensis gen. nov., sp. nov. is proposed. The type strain of Calidifontibacillus erzurumensis is P2T (=CECT 9886T=DSM 107530T=NCCB 100675T). Based on the results of the present study, it is also suggested that Bacillus azotoformans and Bacillus oryziterrae should be transferred to this novel genus as Calidifontibacillus azotoformans comb. nov. and Calidifontibacillus oryziterrae comb. nov., respectively.
Assuntos
Bacillaceae/classificação , Fontes Termais/microbiologia , Filogenia , Bacillaceae/isolamento & purificação , Bacillus/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turquia , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
Five actinobacteria isolates, KC201T, KC401, KC310T, KC712T and 6K102T, were recovered from the Karakum Desert during an investigation of novel actinobacteria with biotechnological potential. A polyphasic approach confirmed the affiliation of the strains to the genus Nonomuraea. The strains showed chemotaxonomic and morphological properties consistent with their classification in the genus Nonomuraea. Furthermore, these strains clearly distinguished and formed well supperted clades in phylogenetic and phylogenomic trees. Low ANI and dDDH values and distinguishing phenotypic properties between isolates KC201T, KC310T, KC712T and 6K102T showed that these strains belonged to novel Nonomuraea species, the names proposed for these taxa are Nonomuraea deserti sp. nov., Nonomuraea diastatica sp. nov., Nonomuraea longispora sp. nov. and Nonomuraea mesophila sp. nov., with the type strains KC310T (=CGMCC 4.7331T =DSM 102919T =KCTC 39774T), KC712T (=CGMCC 4.7334T =DSM 102925T =KCTC 39776), KC201T (=CGMCC 4.7339T =DSM 102917T =KCTC 39781T) and 6K102T (=CGMCC 4.7541T =JCM 32916), respectively.
Assuntos
Actinobacteria/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turcomenistão , Vitamina K 2/químicaRESUMO
A Gram-reaction-positive, endospore-forming bacterium, designated strain P1T, was isolated from water samples collected from Pasinler Hot Spring and characterized using a polyphasic approach to clarify its taxonomic position. Strain P1T was found to have chemotaxonomic and morphological characteristics consistent with its classification in the genus Bacillus. The strain shared the highest 16S rRNA gene sequence identity values with Bacillus thermolactis R-6488T (97.6â%) and Bacillus kokeshiiformis MO-04T (97.2â%) and formed a distinct clade with both type strains in the phylogenetic trees based on 16S rRNA gene sequences. Strain P1T could grow optimally at 55 °C and in the presence of 2â% NaCl. The organism was found to contain meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The predominant menaquinone was determined to be MK-7. The major cellular fatty acids were identified as iso-C15â:â0, iso-C17â:â0 and anteiso-C17â:â0. Based upon the consensus of phenotypic and phylogenetic analyses, strain P1T represents a novel species of the genus Bacillus, for which the name Bacillus pasinlerensis sp. nov. is proposed. The type strain is P1T (=DSM 107529T=CECT 9885T=NCCB 100674T).
Assuntos
Bacillus/classificação , Fontes Termais/microbiologia , Filogenia , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turquia , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A novel actinobacterial strain, designated NA12T, was isolated from coastal sediment sample of Nemrut Lake, a crater lake in eastern Anatolia, Turkey. The taxonomic position of the strain was established using a polyphasic approach. Cultural and chemotaxonomic characteristics of the strain were consistent with its classification within the family Micromonosporaceae. The 16S rRNA gene sequence analysis of strain NA12T showed that the strain closely related to M. radicis AZ1-13T, M. zingiberis PLAI 1-1T, M. craniella LHW63014T and M. endophytica 202201T with pairwise sequence identity values ranging from 99.4 to 99.3%. Digital DNA-DNA hybridization values between strain NA12T and the closely related type strains were ranged from 41.0 to 18.3% while the average nucleotide identity values were between 87.3 and 86.5%, which are well below the designed cut-off points of 70 and 95%, respectively. The G + C content of genomic DNA was 71.5%. Whole-cell hydrolysates of strain NA12T contained 3-hydroxydiaminopimelic acid and meso-diaminopimelic acid. Cell-wall sugars were composed of arabinose, fucose, glucose, mannose, rhamnose and xylose. The polar lipid profile contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, glycophospholipid, amino-phospholipid and two unidentified phospholipids. The predominant menaquinones were MK-9(H6) and MK-9(H4). Major fatty acids were iso-C16:0 and C17:1ω8c. Based upon the consensus of phenotypic and phylogenetic analyses as well as whole genome comparisons, strain NA12T (DSM 100982T = KCTC 39647T) is proposed to represent the type strain of a novel species, Micromonospora craterilacus sp. nov.
Assuntos
Micromonospora , Actinobacteria/classificação , Parede Celular/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Lagos/microbiologia , Micromonospora/classificação , Micromonospora/genética , Micromonospora/isolamento & purificação , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , TurquiaRESUMO
A novel actinobacterial strain, designated 16K104T, was isolated from desert soil collected from the Karakum Desert and characterized using a polyphasic approach to clarify its taxonomic position. Strain 16K104T was found to have chemotaxonomic and morphological properties consistent with classification in the genus Kribbella. The strain shared the highest 16S rRNA gene sequence similarity with Kribbella albertanoniae BC640T (99.2â%), and formed a branch with Kribbella antibiotica YIM 31530T in the 16S rRNA gene phylogenetic tree. Multilocus sequence analysis (MLSA) using five housekeeping genes (gyrB, rpoB, relA, recA and atpD) for comparing the strain with all Kribbella type strains showed that the MLSA distances of strain 16K104T to the closely related type strains of the genus were much higher than the 0.04 threshold. The organism was found to contain ll-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars were identified as ribose and glucose. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol. The predominant menaquinone was MK-9(H4). The major fatty acids were iso-C16â:â0, anteiso-C15:0, iso-C15â:â0 and iso-C17â:â0. The results of digital DNA-DNA hybridization and average nucleotide identity analyses, in addition to MLSA phylogenetic distances, confirmed that the strain represents a novel species of the genus Kribbella, for which the name Kribbella turkmenica sp. nov. is proposed. The type strain is 16K104T (=JCM 32914T=KCTC 49224T).
Assuntos
Actinobacteria/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/química , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turcomenistão , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A novel, Gram-positive, spore-forming actinomycete, designated strain 7K107T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. Strain 7K107T forms extensively branched substrate mycelia and aerial mycelia which differentiate into short chains of spores. The novel strain contains meso-diaminopimelic acid as the diagnostic wall amino acid and glucose, galactose, madurose and ribose as whole cell sugars. The predominant menaquinones were identified as MK-10(H4), MK-9(H4), MK-10(H6) and MK-9(H6). The polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, glycolipids, phospholipids, unidentified lipids and an aminolipid. Major fatty acids were identified as C17:0 10-methyl and C14:0. The G + C content of the genomic DNA was determined to be 70.8%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is a member of the family Streptosporangiaceae. The strain shares high 16S rRNA gene sequence similarity (96.2%) with Sphaerisporangium album YIM 48782T followed by Sphaerisporangium corydalis NEAU-YHS15T (96.0%) and Nonomuraea candida HMC10T (95.9%). However, phylogenetic analyses based on 16S rRNA and gyrB genes, as well as whole genome comparison, confirmed the distinctiveness of the strain from closely related type strains of the genera Sphaerisporangium, Nonomuraea and Thermostaphylospora. On the basis of morphological, chemotaxonomic and phylogenetic as well as genomic analyses, strain 7K107T is concluded to represent a new genus within the family Streptosporangiaceae, for which the name Desertiactinospora gelatinilytica gen. nov., sp. nov is proposed. The type strain of D. gelatinilytica is 7K107T (= DSM 107423T = JCM 32585T = KCTC 49108T).