Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Med Microbiol Immunol ; 213(1): 4, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532203

RESUMO

Besides being scarce, the drugs available for treating cutaneous leishmaniasis have many adverse effects. Ozone is an option to enhance the standard treatment due to the wound-healing activity reported in the literature. In this study, we evaluated the efficiency of ozonated sunflower oil as an adjuvant in treating cutaneous lesions caused by Leishmania amazonensis. BALB/c mice were infected with L. amazonensis, and after the lesions appeared, they were treated in four different schedules using the drug treatment with meglumine antimoniate (Glucantime®), with or without ozonated oil. After thirty days of treatment, the lesions' thickness and their parasitic burden, blood leukocytes, production of NO and cytokines from peritoneal macrophages and lymph node cells were analyzed. The group treated with ozonated oil plus meglumine antimoniate showed the best performance, improving the lesion significantly. The parasitic burden showed that ozonated oil enhanced the leishmanicidal activity of the treatment, eliminating the parasites in the lesion. Besides, a decrease in the TNF levels from peritoneal macrophages and blood leukocytes demonstrated an immunomodulatory action of ozone in the ozonated oil-treated animals compared to the untreated group. Thus, ozonated sunflower oil therapy has been shown as an adjuvant in treating Leishmania lesions since this treatment enhanced the leishmanicidal and wound healing effects of meglumine antimoniate.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Ozônio , Animais , Camundongos , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Óleo de Girassol/uso terapêutico , Antiprotozoários/farmacologia , Meglumina/farmacologia , Meglumina/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Cicatrização , Ozônio/uso terapêutico , Camundongos Endogâmicos BALB C
2.
Parasite Immunol ; 46(7): e13057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008292

RESUMO

Chagas disease is a parasitic disease caused by the protozoan Trypanosoma cruzi with an acute, detectable blood parasites phase and a chronic phase, in which the parasitemia is not observable, but cardiac and gastrointestinal consequences are possible. Mice are the principal host used in experimental Chagas disease but reproduce the human infection depending on the animal and parasite strain, besides dose and route of administration. Lipidic mediators are tremendously involved in the pathogenesis of T. cruzi infection, meaning the prostaglandins and thromboxane, which participate in the immunosuppression characteristic of the acute phase. Thus, the eicosanoids inhibition caused by the nonsteroidal anti-inflammatory drugs (NSAIDs) alters the dynamic of the disease in the experimental models, both in vitro and in vivo, which can explain the participation of the different mediators in infection. However, marked differences are founded in the various NSAIDs existing because of the varied routes blocked by the drugs. So, knowing the results in the experimental models of Chagas disease with or without the NSAIDs helps comprehend the pathogenesis of this infection, which still needs a better understanding.


Assuntos
Anti-Inflamatórios não Esteroides , Doença de Chagas , Modelos Animais de Doenças , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Camundongos , Trypanosoma cruzi/efeitos dos fármacos , Humanos
3.
Acta Odontol Scand ; 81(1): 40-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35694780

RESUMO

OBJECTIVE: This study aimed to evaluate whether ligature-induced periodontitis and rheumatoid arthritis (RA) potentiate the deleterious effects on functional capacity, periodontal and synovial tissues, leukocyte migration, and interleukin 17 (IL-17) levels, and to investigate the repercussions of single Freund's Complete Adjuvant (FCA) injection associated with periodontitis. MATERIALS AND METHODS: Fifty-one male Wistar rats were randomised into six groups: control (CG, n = 8), RA (RAG, n = 9), periodontitis (PG, n = 9), periodontitis and RA (PRAG, n = 9), periodontitis and intradermal injection (PIDG, n = 9), and periodontitis and intra-articular injection (PIAG, n = 7). The animals underwent ligature placement and one or two injections with FCA to induce RA. Motor disability, nociceptive threshold, joint edema, and muscle strength were assessed, and the animals were euthanized on day 30. Synovial fluid, hemimandibles, and knee joints were collected. RESULTS: PRAG showed no reduction of edema or improvement of muscle strength, whereas it showed most significant changes in leukocyte migration, morphological analyses of the synovial membrane (SM), and radiographic and histometric analyses of the jaw. The PIAG showed some alterations, though not permanent. CONCLUSION: Ligature-induced periodontitis and RA induced by two FCA injections accentuated the deleterious effects on functional capacity, leukocyte migration, synovial and periodontal tissues.


Assuntos
Artrite Reumatoide , Periodontite , Animais , Masculino , Ratos , Artrite Reumatoide/complicações , Edema/induzido quimicamente , Leucócitos , Modelos Teóricos , Periodontite/complicações , Ratos Wistar , Movimento Celular , Interleucina-17
4.
Parasitol Res ; 119(12): 4243-4253, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33048207

RESUMO

The current treatment of leishmaniasis presents some problems, such as cell toxicity, parenteral route, and time of treatment. Ozone emerges as an option to accelerate the standard treatment due to the immunomodulatory, antioxidant, and wound healing activity reported in the literature. This work aimed to evaluate the efficacy of aqueous ozone as an adjuvant to the standard treatment of cutaneous lesions caused by Leishmania amazonensis in an experimental model. For in vivo experiments, mice were randomly distributed in 6 groups, which were infected with L. amazonensis and treated in five different schedules using the standard treatment with Glucantime® with or without aqueous ozone. After the last day of treatment, the animals were euthanized and were analyzed: the thickness of lesions; collagen deposition, the parasitic burden of the lesions; blood leukocyte number; NO; and cytokine dosages and arginase activity from peritoneal macrophages. All treated groups showed a decrease in the lesion, but with a significative deposition of collagen in lesions with local ozone treatment. The parasite burden showed that ozone enhanced the leishmanicidal activity of the reference drug. The reduction of NO production and blood leukocyte count and increases in the arginase activity showed an immunomodulatory activity of ozone in the treated animals. Thus, ozone therapy has been shown to work as an adjuvant in the treatment of Leishmania lesions, enhancing leishmanicidal and wound healing activity of standard treatment.


Assuntos
Leishmaniose/tratamento farmacológico , Oxidantes Fotoquímicos/administração & dosagem , Ozônio/administração & dosagem , Animais , Feminino , Imunomodulação , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Antimoniato de Meglumina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Resultado do Tratamento , Cicatrização/efeitos dos fármacos
5.
J Pharm Pharmacol ; 74(1): 77-87, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34791343

RESUMO

OBJECTIVES: This study aimed to evaluate the in vitro anti-Leishmania activity of chalcone-rich three extracts (LDR, LHR and LMR) from Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima against L. amazonensis. Also, the immunomodulatory and antioxidant capacity was assessed. METHODS: Successive extraction with hexane, dichloromethane and methanol were performed to obtain LHR, LDR and LMR extracts from L. cultratus roots, which were characterized by 1H NMR. Promastigotes, amastigotes and peritoneal macrophages were exposed to crescent concentrations of the three extracts, and after incubation, the inhibition rates were determined to both types of cells, and morphological analyses were performed on the parasite. The immunomodulatory activity was determined against stimulated macrophages. KEY FINDINGS: LDR, LHR and LMR inhibited promastigote cell growth (IC50 0.62 ± 0.3, 0.94 ± 0.5 and 1.28 ± 0.73 µg/ml, respectively) and reduced the number of amastigotes inside macrophages (IC50 1.36 ± 0.14, 1.54 ± 0.26 and 4.09 ± 0.88 µg/ml, respectively). The cytotoxicity against murine macrophages resulted in a CC50 of 13.12 ± 1.92, 92.93 ± 9.1 and >300 µg/ml, resulting in high selectivity index to promastigotes and amastigotes. The extracts also inhibited the nitric oxide secretion in RAW 264.7 macrophages. The antioxidant capacity resulted in a higher scavenger LMR ability. CONCLUSIONS: These results suggest that L. cultratus extracts have anti-Leishmania potential, are non-toxic, and immunosuppress macrophages in vitro.


Assuntos
Chalcona/farmacologia , Fabaceae , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Antiprotozoários/farmacologia , Fatores Imunológicos/farmacologia , Camundongos , Raízes de Plantas
6.
Saudi J Biol Sci ; 28(1): 99-108, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424286

RESUMO

Trypanosoma cruzi is the agent of Chagas disease, an infection that affects around 8 million people worldwide. The search for new anti-T. cruzi drugs are relevant, mainly because the treatment of this disease is limited to two drugs. The objective of this study was to investigate the trypanocidal and cytotoxic activity and elucidate the chemical profile of extracts from the roots of the Lonchocarpus cultratus. Roots from L. cultratus were submitted to successive extractions with hexane, dichloromethane, and methanol, resulting in LCH, LCD, and LCM extracts, respectively. Characterization of extracts was done using 1H-RMN, 13C-RMN, CC and TLC. Treatment of T. cruzi forms (epimastigotes, trypomastigotes, and amastigotes) with crescent concentrations of LCH, LCD, and LCM was done for 72, 48, and 48 h, respectively. After this, the percentage of inhibition and IC50/LC50 were calculated. Benznidazole was used as a positive control. Murine macrophages were treated with different concentrations of both extracts for 48 h, and after, the cellular viability was determined by the MTT method and CC50 was calculated. The chalcones derricin and lonchocarpine were identified in the hexane extract, and for the first time in the genus Lonchocarpus, the presence of a dihydrolonchocarpine derivative was observed. Other chalcones such as isocordoin and erioschalcone B were detected in the dichloromethane extract. The dichloromethane extract showed higher activity against all tested forms of T. cruzi than the other two extracts, with IC50 values of 10.98, 2.42, and 0.83 µg/mL, respectively; these values are very close to those of benznidazole. Although the dichloromethane extract presented a cytotoxic effect against mammalian cells, it showed selectivity against amastigotes. The methanolic extract showed the lowest anti-T. cruzi activity but was non-toxic to peritoneal murine macrophages. Thus, the genus Lonchocarpus had demonstrated in the past action against epimastigotes forms of T. cruzi but is the first time that the activity against infective forms is showed, which leading to further studies with in vivo tests.

7.
Immunobiology ; 225(2): 151879, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812346

RESUMO

Diabetes causes dysregulation in signal transduction in immune cells leading to an impaired response to pathogens. Herein, we investigated the impact of type 1 diabetes (T1D) in bone marrow-derived macrophages (BMDM), using male non-diabetic and diabetic C57BL/6 mice (alloxan 60 mg/kg, i.v., CEUA/FCF/USP - 467). Diabetic BMDM expressed impaired phosphoinositide 3-kinase (PI3K), being lower p-PI3K p55 levels and higher levels of PI3K p110 alpha, whereas protein kinase B (PKB/Akt) (Ser-473 and Thr-308), extracellular signal-regulated kinases (ERK 1/2), and stress-activated protein kinase (SAPK/JNK) were enhanced compared to non-diabetic BMDM. Further evaluation of the responsiveness to lipopolysaccharide (LPS; 0.1 and 1 ug/mL), diabetic BMDM and peritoneal macrophage secreted dysregulated levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 levels. In 24 h, diabetic BMDM stimulated by LPS presented lower metabolic activity, with no differences in cell surveillance. Therefore, LPS re-stimulation (0.1 ug/mL) in diabetic BMDM resulted in higher secretion of TNF-α compared to non-diabetic BMDM. However, diabetic peritoneal macrophages secreted similar IL-6 levels in the first and additional 24 h of LPS stimulation. In general, our results demonstrated that diabetes exerts an impact in both BMDM and peritoneal macrophages ability to secrete cytokine under LPS stimulation.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos Peritoneais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Células da Medula Óssea/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
8.
Sci Rep ; 9(1): 11447, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391499

RESUMO

Macrophages may be a crucial aspect of diabetic complications associated with the inflammatory response. In this study, we examined how hyperglycaemia, a common aspect of diabetes, modulates bone marrow-derived macrophages (BMDMs) under an inflammatory stimulus. To perform this study, BMDMs from non-diabetic and diabetic (60 mg/kg alloxan, i.v.) male C57BL/6 mice (CEUA/FCF/USP-488) were cultured under normal (5.5 mM) and high glucose (HG, 25 or 40 mM) conditions and stimulated or not stimulated with lipopolysaccharide (LPS, 100 ng/mL). Compared to the BMDMs from the normoglycaemic mice, the LPS-stimulated BMDMs from the diabetic mice presented reduced TLR4 expression on the cell surface, lower phagocytic capacity, and reduced secretion of NO and lactate but greater oxygen consumption and greater phosphorylation of p46 SAPK/JNK, p42 ERK MAPK, pAKT and pPKC-δ. When the BMDMs from the non-diabetic mice were cultured under high-glucose conditions and stimulated with LPS, TLR4 expression was reduced on the cell surface and NO and H2O2 levels were reduced. In contrast, the diabetic BMDMs cultured under high glucose conditions presented increased levels of lactate and reduced phosphorylation of AKT, PKC-δ and p46 SAPK/JNK but enhanced phosphorylation of the p46 subunit of SAPK/JNK after LPS stimulation. High glucose levels appear to modify macrophage behaviour, affecting different aspects of diabetic and healthy BMDMs under the same LPS stimulus. Thus, hyperglycaemia leaves a glucose legacy, altering the basal steady state of macrophages.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Receptor 4 Toll-Like/metabolismo , Aloxano/toxicidade , Animais , Glicemia/imunologia , Células Cultivadas , Meios de Cultura/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Cultura Primária de Células , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia
9.
Int J Med Mushrooms ; 18(4): 313-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27481297

RESUMO

Ganoderma australe was studied to determine the composition of the cell wall, and polysaccharide fraction SK5 was obtained after freeze-thawing an aqueous 5% potassium hydroxide extraction. The monosaccharide composition of the SK5 fraction revealed by gas chromatography-mass spectrometry showed 81.3% glucose, and analyses by 13C nuclear magnetic resonance spectroscopy confirmed a ß-glucan with glycosidic links of the (1→3)-ß type and most likely 4-O substituted. In addition, the biological effect of the ß-glucan from G. australe was evaluated via in vitro cell cultures of peritoneal macrophages isolated from Swiss mice. Biological assays were assessed for toxicity and cell activation, interleukin-6 cytokine concentrations, and the ability to stimulate phagocytic activity. There was an increase in interleukin-6 by approximately 111% with 1.0 µg/mL of polysaccharide, and phagocyte activity was increased in all concentrations examined, obtaining 52.3% with 0.25 µg/mL polysaccharide. The results indicate that a ß-(1→3)-glucan isolated from G. australe can be classified as a biological response modifier.


Assuntos
Ganoderma/química , Fatores Imunológicos/farmacologia , Interleucina-6/metabolismo , Fagocitose/efeitos dos fármacos , Polissacarídeos/farmacologia , beta-Glucanas/farmacologia , Animais , Parede Celular/química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos
10.
São Paulo; s.n; s.n; 2019. 153 p. graf, ilus.
Tese em Português | LILACS | ID: biblio-996744

RESUMO

O diabetes mellitus é um grupo heterogêneo de distúrbios metabólicos caracterizado pela hiperglicemia. Indivíduos diabéticos possuem maior susceptibilidade a infecções comparado a indivíduos sadios e a hiperglicemia é um dos principais fatores que contribuem para isso, em parte, por alterar a resposta imune. Sendo assim, os macrófagos, como células essenciais para a resposta inflamatória, podem apresentar importante papel na resposta imune alterada de indivíduos diabéticos. Neste estudo, investigamos como a hiperglicemia modula os macrófagos derivados da medula óssea (BMDMs) sob um estímulo inflamatório. Para realizar este estudo, os BMDMs de camundongos C57BL/6 machos não diabéticos e diabéticos (60 mg/kg de aloxana, iv) (CEUA / FCF / USP-488) foram cultivados sob condições normais de glicose (5,5 mM) e alta concentração de glicose (25 mM ou 40 mM) e estimuladas ou não com lipopolissacarídeo (LPS, 100 ng/mL). Em comparação com os BMDMs dos camundongos não diabéticos, os BMDMs dos camundongos diabéticos estimulados com LPS apresentaram menor expressão de CD38 no tempo basal e após 24 horas, além de menor expressão de receptor do tipo Toll (TLR)-4 na superfície celular, menor capacidade fagocítica e redução na secreção de óxido nítrico, lactato, fator de necrose tumoral- e interleucina (IL)-10, porém apresentaram maior expressão de CD80, CD86 e MHC-II, maior consumo de oxigênio e maior fosforilação em quinase ativada por estresse/quinase Jun-amino-terminal (SAPK/JNK) subunidade p46 e em quinase regulada por sinal extracelular (ERK) subunidade p42, proteína quinase B (AKT) e proteína quinase C (PKC)-δ assim como maior secreção de IL-6. Quando os BMDMs dos camundongos não diabéticos foram cultivados sob condições de alta concentração de glicose in vitro e estimulados com LPS, a expressão de TLR4 e os níveis de óxido nítrico e peróxido de hidrogênio foram reduzidos. Por outro lado, os BMDMs diabéticos que também foram cultivados em alta concentração de glicose in vitro apresentaram níveis aumentados de lactato e fosforilação reduzida em AKT e PKC-δ, porém apresentaram fosforilação aumentada em p46 SAPK/JNK. A alta concentração de glicose parece modificar o comportamento dos macrófagos, afetando diferentes aspectos dos BMDMs diabéticos e não diabéticos sob estímulo de LPS, assim a hiperglicemia deixa um legado de glicose, induzindo uma memória glicêmica, alterando o estado basal dos macrófagos, modificando a via de sinalização do TLR4 contribuindo para a susceptibilidade de indivíduos diabéticos a infecções


Diabetes mellitus is a heterogeneous group of metabolic disorders characterized by hyperglycemia. Diabetic individuals are more susceptible to infections compared to healthy subjects, and hyperglycemia is one of the major contributing factors, partly because they alter the immune response. Thus, macrophages, as essential cells for the inflammatory response, may play an important role in the altered immune response of diabetic individuals. In this study, we investigated how hyperglycemia modulates bone marrow derived macrophages (BMDMs) under an inflammatory stimulus. To perform this study, BMDMs from non-diabetic male and diabetic C57BL/6 mice (60 mg / kg aloxane, iv) (CEUA / FCF / USP-488) were cultured under normal glucose conditions (5.5 mM) and high glucose concentration (25 mM or 40 mM) and stimulated or not with lipopolysaccharide (LPS, 100 ng / ml). Compared to non-diabetic mice BMDMs, the BMDMs of LPS-stimulated diabetic mice showed lower expression of CD38 at baseline and after 24 hours, as well as lower Toll-like receptor (TLR)-4 on the cell surface, lower secretion of lactate, tumor necrosis factor-, and interleukin (IL)-10, but showed higher expression of CD80, CD86 and MHC-II, higher oxygen consumption and greater phosphorylation in stress-activated kinase/Jun-amino-terminal kinase (SAPK / JNK) p46 subunit and in extracellular signal regulated kinase (ERK) p42 subunit, protein kinase B (AKT) and protein kinase C (PKC)-δ as well as higher secretion of IL-6. When the BMDMs of nondiabetic mice were cultured under conditions of in vitro high glucose concentration and stimulated with LPS, the levels of TLR4 expression, nitric oxide and hydrogen peroxide were reduced. On the other hand, diabetic BMDMs that were also cultured in high glucose concentration of glucose in vitro showed increased levels of lactate and reduced phosphorylation in AKT and PKC-δ, but showed increased phosphorylation in p46 SAPK/JNK. A high glucose concentration seems to modify the behavior of macrophages, affecting different aspects of diabetic and non-diabetic BMDMs under the same LPS stimulus. Hyperglycemia leaves a glucose legacy, inducing a glycemic memory, altering the basal state of macrophages, modifying the TLR4 signaling pathway, and may play a key role in the high susceptibility of diabetic individuals to infections


Assuntos
Animais , Masculino , Camundongos , Hiperglicemia/complicações , Inflamação/complicações , Macrófagos/metabolismo , Lipopolissacarídeos , Diabetes Mellitus/classificação , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA