Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 610(7933): 674-679, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36253468

RESUMO

Reconfigurable, mechanically responsive crystalline materials are central components in many sensing, soft robotic, and energy conversion and storage devices1-4. Crystalline materials can readily deform under various stimuli and the extent of recoverable deformation is highly dependent upon bond type1,2,5-10. Indeed, for structures held together via simple electrostatic interactions, minimal deformations are tolerated. By contrast, structures held together by molecular bonds can, in principle, sustain much larger deformations and more easily recover their original configurations. Here we study the deformation properties of well-faceted colloidal crystals engineered with DNA. These crystals are large in size (greater than 100 µm) and have a body-centred cubic (bcc) structure with a high viscoelastic volume fraction (of more than 97%). Therefore, they can be compressed into irregular shapes with wrinkles and creases, and, notably, these deformed crystals, upon rehydration, assume their initial well-formed crystalline morphology and internal nanoscale order within seconds. For most crystals, such compression and deformation would lead to permanent, irreversible damage. The substantial structural changes to the colloidal crystals are accompanied by notable and reversible optical property changes. For example, whereas the original and structurally recovered crystals exhibit near-perfect (over 98%) broadband absorption in the ultraviolet-visible region, the deformed crystals exhibit significantly increased reflection (up to 50% of incident light at certain wavelengths), mainly because of increases in their refractive index and inhomogeneity.


Assuntos
Coloides , DNA , Coloides/química , DNA/química , Tamanho da Partícula , Eletricidade Estática , Cristalização
2.
Nature ; 611(7937): 695-701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289344

RESUMO

Although tremendous advances have been made in preparing porous crystals from molecular precursors1,2, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10-1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel superlattices with pores of 10 to 1,000 nm from DNA-modified hollow colloidal nanoparticles (NPs) is reported. By tuning hollow NP geometry and DNA design, one can adjust crystal pore geometry (pore size and shape) and channel topology (the way in which pores are interconnected). The assembly of hollow NPs is driven by edge-to-edge rather than face-to-face DNA-DNA interactions. Two new design rules describing this assembly regime emerge from these studies and are then used to synthesize 12 open-channel superlattices with control over crystal symmetry, channel geometry and topology. The open channels can be selectively occupied by guests of the appropriate size and that are modified with complementary DNA (for example, Au NPs).


Assuntos
Cristalização , DNA , Ouro , Nanopartículas , DNA/química , Ouro/química , Nanopartículas/química , Tamanho da Partícula , Porosidade , Coloides/química , Cristalização/métodos
3.
Proc Natl Acad Sci U S A ; 117(35): 21052-21057, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817562

RESUMO

Anchoring nanoscale building blocks, regardless of their shape, into specific arrangements on surfaces presents a significant challenge for the fabrication of next-generation chip-based nanophotonic devices. Current methods to prepare nanocrystal arrays lack the precision, generalizability, and postsynthetic robustness required for the fabrication of device-quality, nanocrystal-based metamaterials [Q. Y. Lin et al. Nano Lett. 15, 4699-4703 (2015); V. Flauraud et al., Nat. Nanotechnol. 12, 73-80 (2017)]. To address this challenge, we have developed a synthetic strategy to precisely arrange any anisotropic colloidal nanoparticle onto a substrate using a shallow-template-assisted, DNA-mediated assembly approach. We show that anisotropic nanoparticles of virtually any shape can be anchored onto surfaces in any desired arrangement, with precise positional and orientational control. Importantly, the technique allows nanoparticles to be patterned over a large surface area, with interparticle distances as small as 4 nm, providing the opportunity to exploit light-matter interactions in an unprecedented manner. As a proof-of-concept, we have synthesized a nanocrystal-based, dynamically tunable metasurface (an anomalous reflector), demonstrating the potential of this nanoparticle-based metamaterial synthesis platform.


Assuntos
Coloides/química , Cristalização/métodos , Nanopartículas Metálicas/química , Anisotropia , DNA/química , Ouro/química , Tamanho da Partícula , Propriedades de Superfície
4.
Nano Lett ; 22(12): 4848-4853, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35675212

RESUMO

Heterostructures of optical cavities and quantum emitters have been highlighted for enhanced light-matter interactions. A silicon nanosphere, core, and MoS2, shell, structure is one such heterostructure referred to as the core@shell architecture. However, the complexity of the synthesis and inherent difficulties to locally probe this architecture have resulted in a lack of information about its localized features limiting its advances. Here, we utilize valence electron energy loss spectroscopy (VEELS) to extract spatially resolved dielectric functions of Si@MoS2 with nanoscale spatial resolution corroborated with simulations. A hybrid electronic critical point is identified ∼3.8 eV for Si@MoS2. The dielectric functions at the Si/MoS2 interface is further probed with a cross-sectioned core-shell to assess the contribution of each component. Various optical parameters can be defined via the dielectric function. Hence, the methodology and evolution of the dielectric function herein reported provide a platform for exploring other complex photonic nanostructures.


Assuntos
Molibdênio , Nanoestruturas , Eletrônica , Nanoestruturas/química , Silício/química
5.
Small ; 18(17): e2200413, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35304967

RESUMO

Heterostructures of transition metal dichalcogenides and optical cavities that can couple to each other are rising candidates for advanced quantum optics and electronics. This is due to their enhanced light-matter interactions in the visible to near-infrared range. Core-shell structures are particularly valuable for their maximized interfacial area. Here, the chemical vapor deposition synthesis of Si@MoS2 core-shells and extensive structural characterization are presented. Compared with traditional plasmonic cores, the silicon dielectric Mie resonator core offers low Ohmic losses and a wider spectrum of optical modes. The magnetic dipole (MD) mode of the silicon core efficiently couples with MoS2 through its large tangential component at the core surface. Using transmission electron microscopy and correlative single-particle scattering spectroscopy, MD mode splitting is experimentally demonstrated in this unique Si@MoS2 core-shell structure. This is evidence for resonance coupling, which is limited to theoretical proposals in this particular system. A coupling constant of 39 meV is achieved, which is ≈1.5-fold higher than previous reports of particle-on-film geometries with a smaller interfacial area. Finally, higher-order systems with the potential to tune properties are demonstrated through a dimer system of Si@MoS2 , forming the basis for emerging architectures for optoelectronic and nanophotonic applications.

6.
Small ; 18(33): e2201171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859524

RESUMO

Broadband absorbers are useful ultraviolet protection, energy harvesting, sensing, and thermal imaging. The thinner these structures are, the more device-relevant they become. However, it is difficult to synthesize ultrathin absorbers in a scalable and straightforward manner. A general and straightforward synthetic strategy for preparing ultrathin, broadband metasurface absorbers that do not rely on cumbersome lithographic steps is reported. These materials are prepared through the surface-assembly of plasmonic octahedral nanoframes (NFs) into large-area ordered monolayers via drop-casting with subsequent air-drying at room temperature. This strategy is used to produce three types of ultrathin broadband absorbers with thicknesses of ≈200 nm and different lattice symmetries (loose hexagonal, twisted hexagonal, dense hexagonal), all of which exhibit efficient light absorption (≈90%) across wavelengths ranging from 400-800 nm. Their broadband absorption is attributed to the hollow morphologies of the NFs, the incorporation of a high-loss material (i.e., Pt), and the strong field enhancement resulting from surface assembly. The broadband absorption is found to be polarization-independent and maintained for a wide range of incidence angles (±45°). The ability to design and fabricate broadband metasurface absorbers using this high-throughput surface-based assembly strategy is a significant step toward the large-scale, rapid manufacturing of nanophotonic structures and devices.


Assuntos
Luz , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos
7.
Opt Express ; 30(8): 12788-12796, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472908

RESUMO

We propose an effective medium approach to tune and control surface phonon polariton dispersion relations along the three main crystallographic directions of α-phase molybdenum trioxide. We show that a metamaterial consisting of subwavelength air inclusions into the α-MoO3 matrix displays new absorption modes producing a split of the Reststrahlen bands of the crystal and creating new branches of phonon polaritons. In particular, we report hybridization of bulk and surface polariton modes by tailoring metamaterials' structural parameters. Theoretical predictions obtained with the effective medium approach are validated by full-field electromagnetic simulations using finite difference time domain method. Our study sheds light on the use of effective medium theory for modeling and predicting wavefront polaritons. Our simple yet effective approach could potentially enable different functionalities for hyperbolic infrared metasurface devices and circuits on a single compact platform for on-chip infrared photonics.

8.
Nano Lett ; 21(6): 2422-2428, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33720738

RESUMO

An inverse-designed metalens is proposed, designed, and fabricated on an optical fiber tip via a 3D direct laser-writing technique through two-photon polymerization. A computational inverse-design method based on an objective-first algorithm was used to design a thin circular grating-like structure to transform the parallel wavefront into a spherical wavefront at the near-infrared range. With a focal length about 8 µm at an operating wavelength of 980 nm and an optimized focal spot at the scale of 100 nm, our proposed metalens platform is suitable for two-photon direct laser lithography. We demonstrate the use of the fabricated metalens in a direct laser lithography system. The proposed platform, which combines the 3D printing technique and the computational inverse-design method, shows great promise for the fabrication and integration of multiscale and multiple photonic devices with complex functionalities.

9.
Opt Express ; 29(17): 27219-27227, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615142

RESUMO

Nanophotonics has joined the application areas of deep neural networks (DNNs) in recent years. Various network architectures and learning approaches have been employed to design and simulate nanophotonic structures and devices. Design and simulation of reconfigurable metasurfaces is another promising application area for neural network enabled nanophotonic design. The tunable optical response of these metasurfaces rely on the phase transitions of phase-change materials, which correspond to significant changes in their dielectric permittivity. Consequently, simulation and design of these metasurfaces requires the ability to model a diverse span of optical properties. In this work, to realize forward and inverse design of reconfigurable metasurfaces, we construct forward and inverse networks to model a wide range of optical characteristics covering from lossless dielectric to lossy plasmonic materials. As proof-of-concept demonstrations, we design a Ge2Sb2Te5 (GST) tunable resonator and a VO2 tunable absorber using our forward and inverse networks, respectively.

10.
Nano Lett ; 20(11): 8096-8101, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054221

RESUMO

Optical metamaterials, engineered to exhibit electromagnetic properties not found in natural materials, may enable new light-based applications including cloaking and optical computing. While there have been significant advances in the fabrication of two-dimensional metasurfaces, planar structures create nontrivial angular and polarization sensitivities, making omnidirectional operation impossible. Although three-dimensional (3D) metamaterials have been proposed, their fabrication remains challenging. Here, we use colloidal crystal engineering with DNA to prepare isotropic 3D metacrystals from Au nanocubes. We show that such structures can exhibit refractive indices as large as ∼8 in the mid-infrared, far greater than that of common high-index dielectrics. Additionally, we report the first observation of multipolar Mie resonances in metacrystals with well-formed habits, occurring in the mid-infrared for submicrometer metacrystals, which we measured using synchrotron infrared microspectroscopy. Finally, we predict that arrays of metacrystals could exhibit negative refraction. The results present a promising platform for engineering devices with unnatural optical properties.

11.
Opt Express ; 28(11): 16725-16739, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549488

RESUMO

We present a theoretical study on the plasmonic response of borophene, a monolayer 2D material that is predicted to exhibit metallic response and anisotropic plasmonic behavior in visible wavelengths. We investigate plasmonic properties of borophene thin films as well as borophene nanoribbons and nanopatches where polarization-sensitive absorption values in the order of 50% is obtained with monolayer borophene. It is demonstrated that by adding a metal layer, this absorption can be enhanced to 100%. We also examine giant dichroism in monolayer borophene which can be tuned passively (patterning) and actively (electrostatic gating) and our simulations yield 20% reflected light with significant polarization rotation. These findings reveal the potential of borophene in the manipulation of phase, amplitude and polarization of light at the extreme subwavelength scales.

12.
Opt Express ; 28(26): 39203-39215, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379475

RESUMO

We experimentally investigate the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films using an infrared thermographic technique. During the semiconductor to metal phase change process, VO2 optical properties dynamically change and infrared emission undergoes a hysteresis loop due to differences between heating and cooling stages. The shape of the hysteresis loop was accurately monitored under different dynamic heating/cooling rates. In order to quantify and understand the effects of different rates, we used a numerical modelling approach in which a VO2 thin layer was modeled as metamaterial. The main experimental findings are interpreted assuming that both the rate of formation and shape of metallic inclusions are tuned with the heating/cooling rate. The structural transition from monoclinic to tetragonal phases is the main mechanism for controlling the global properties of the phase transition. However, our experimental results reveal that the dynamics of the heating/cooling process can become a useful parameter for further tuning options and lays out a macroscopic optical sensing scheme for the microscopic phase change dynamics of VO2. Our study sheds light on phase-transition dynamics and their effect on the infrared emission spectra of VO2 thin films, therefore enabling the heating/cooling rate to be an additional parameter to control infrared emission characteristics of thermal emitters. The hysteresis loop represents the phase coexistence region, thus being of fundamental importance for several applications, such as the operation of radiative thermal logic elements based on phase transition materials. For such applications, the phase transition region is shifted for heating and cooling processes. We also show that, depending on the way the phase change elements are heated, the temperature operation range will be slightly modified.

13.
Nano Lett ; 19(7): 4535-4542, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184155

RESUMO

Self- and directed-assembly approaches have enabled precise control over the composition and geometry of 2D and 3D nanoparticle constructs. However, the resulting structures are typically static, providing only a single structural arrangement of the nanoparticle building blocks. In this work, the power of DNA-linked nanoparticle assembly is coupled to a grayscale patterning technique to create programmable surfaces for assembly and thermally activated reorganization of gold nanoparticle arrays. Direct grayscale patterning of DNA monolayers by electron-beam lithography (DNA-EBL) enables the production of surfaces with nanometer-scale control over the density of functional DNA. This enables tuning of the particle-surface interactions with single-nanoparticle resolution and without the need for a physical template as employed in most directed assembly methods. This technique is applied on suspended membrane structures to achieve high-resolution assembly of 2D nanoparticle arrays with highly mutable architectures. Gold nanorods assembled on grayscale-patterned surfaces exhibit temperature-dependent configurations and ordering behavior that result in tunable polarization-dependent optical properties. In addition, spherical gold particles assembled from a bimodal suspension produce arrays with temperature-dependent configurations of small and large particles. These results have important implications for the design and fabrication of reconfigurable nanoparticle arrays for application as structurally tunable optical metasurfaces.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química
14.
Opt Express ; 27(16): 23576-23584, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510632

RESUMO

In this paper, we present a patterned graphene-hBN metamaterial structure and theoretically demonstrate the tunable multi-wavelength absorption within the hybrid structure. The simulation results show that the hybrid plasmon-phonon polariton modes originate from the coupling between plasmon polaritons in graphene and phonons in hBN, which are responsible for the triple-band absorption. By varying the Fermi level of graphene patterns, the absorption peaks can be tuned dynamically and continuously, and the surface plasmon-phonon polariton modes in the proposed structure enable high absorption and wideband tunability. In addition, how different structural parameters affect the absorption spectra is discussed. This work provides us a new method for the control and enhancement of plasmon-phonon polariton interactions.

15.
Nano Lett ; 18(4): 2645-2649, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29570302

RESUMO

Multiplexed surface encoding is achieved by positioning two different sizes of gold nanocubes on gold surfaces with precisely defined locations for each particle via template-confined, DNA-mediated nanoparticle assembly. As a proof-of-concept demonstration, cubes with 86 and 63 nm edge lengths are assembled into arrangements that physically and spectrally encrypt two sets of patterns in the same location. These patterns can be decrypted by mapping the absorption intensity of the substrate at λ = 773 and 687 nm, respectively. This multiplexed encoding platform dramatically increases the sophistication and density of codes that can be written using colloidal nanoparticles, which may enable high-security, high-resolution encoding applications.


Assuntos
DNA/química , Ouro/química , Nanopartículas/química , Nanotecnologia/métodos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
16.
Opt Express ; 26(5): 5469-5477, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529749

RESUMO

Most of hyperbolic metamaterials (HMMs) investigated to date are based on isotropic materials resulting in uniaxial HMMs in which dielectric permittivities perpendicular to the propagation direction are the same. Using an anisotropic material constituent to form a HMM is a promising research direction providing opportunities to control the dielectric permittivity in all three directions independently. Herein, we propose and theoretically demonstrate novel biaxial HMMs composed of multilayer stacks of few-layer black phosphorus (BP) and Au thin films. Black phosphorus is an anisotropic material exhibiting crystal axis-dependent dielectric permittivity due to its puckered crystal structure. The proposed HMM provides previously unattained hyperbolic dispersion relations in which the dielectric permittivity in Z-direction of the structure shows opposite sign from that in X- and Y-directions in the most wavelengths from 400~900nm. Furthermore, we calculated the Purcell factor of the proposed biaxial HMMs using full-field electromagnetic simulations.

17.
Nanotechnology ; 29(28): 285202, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29671407

RESUMO

Two-dimensional black phosphorus (BP) has drawn extensive research interest due to its promising anisotropic photonic and electronic properties. Here, we study anisotropic optical absorption and photoresponse of exfoliated BP flakes at visible frequencies. We enhance this intrinsic optical anisotropy in BP flakes by coupling plasmonic rectangular nanopatch arrays that support localized surface plasmon resonances. In particular, by combining extrinsic anisotropic plasmonic nanostructures lithographically aligned with intrinsically anisotropic BP flakes, we demonstrate for the first time a combined anisotropic plasmonic-semiconductor coupling that provides significant control over the polarization-dependent optical properties of the plasmon-BP hybrid material system, enhancing polarization-sensitive responses to a larger degree. This hybrid material system not only unveils the plasmon-enhanced mechanisms in BP, but also provides novel controllable functionalities in optoelectronic device applications involving polarization-sensitive optical and electrical responses.

18.
Nano Lett ; 16(6): 3457-62, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27152653

RESUMO

Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

19.
Opt Express ; 24(24): 27882-27889, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906356

RESUMO

Graphene is a monolayer plasmonic material that has been widely studied in the area of plasmonics and nanophotonics. Combining graphene with traditional plasmonic structures provides new opportunities and challenges. One particular application for nanostructured metals is enhanced optical transmission. However, extraordinary transmission (EOT) is known to have a frequency-selective performance due to size and periodicity of the nanohole arrays. Here, we propose to use a continuous graphene layer to enhance transmission through gold nanoslit arrays at mid-infrared (mid-IR) wavelengths. Although graphene absorbs 2.3% of light, by exciting surface plasmon polaritons (SPPs) at the graphene/gold nanoslit arrays interface, we have theoretically demonstrated enhanced infrared transmission over broad range of wavelengths in the mid-IR region. Our analyses of the effects of various structure parameters on the transmittance spectra shows that surface plasmon polaritons excited at the graphene/metal interface is responsible for enhanced transmission behavior. Moreover, calculated steady-state electric field distribution supports our predictions. Our work opens new directions to study 2D plasmonics using a continuous graphene film without the need of structuring it and also employs the broadband optical response of graphene to enable broadband extraordinary transmission enhancement.

20.
Nano Lett ; 15(4): 2700-4, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25729895

RESUMO

Single-layer direct band gap semiconductors such as transition metal dichalcogenides are quite attractive for a wide range of electronics, photonics, and optoelectronics applications. Their monolayer thickness provides significant advantages in many applications such as field-effect transistors for high-performance electronics, sensor/detector applications, and flexible electronics. However, for optoelectronics and photonics applications, inherent monolayer thickness poses a significant challenge for the interaction of light with the material, which therefore results in poor light emission and absorption behavior. Here, we demonstrate enhanced light emission from large-area monolayer MoS2 using plasmonic silver nanodisc arrays, where enhanced photoluminescence up to 12-times has been measured. Observed phenomena stem from the fact that plasmonic resonance couples to both excitation and emission fields and thus boosts the light-matter interaction at the nanoscale. Reported results allow us to engineer light-matter interactions in two-dimensional materials and could enable highly efficient photodetectors, sensors, and photovoltaic devices, where photon absorption and emission efficiency highly dictate the device performance.


Assuntos
Dissulfetos/química , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Molibdênio/química , Ressonância de Plasmônio de Superfície/métodos , Dissulfetos/efeitos da radiação , Luz , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Molibdênio/efeitos da radiação , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA