Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111488, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120274

RESUMO

Reducing the potential leaching of Mo and Ni from the fly ash (FA) of petroleum coke is an increasingly important issue as Asia and Europe's demand is expected to drastically intensify as continuing urbanisation and technological innovation demands ever more electricity. In the present study, we investigated coal combustion products (CCP) from a large coal-fired power station fed with a 56:44 coal/petroleum coke blend. Results revealed that leachable concentrations of Mo and Ni from FA were in the upper non-hazardous limit and in the inert limit, respectively (2003/33/EC). Whilst common prevention measures for Mo and Ni based on the adsorption capacity of boiler slag (BS), a mixture of BS: goethite, and jarosite, were considered insufficient to reduce the potential leaching of Mo into FA leachates, a novel chemical stabilisation method based on an aggregate product of portlandite and FA immobilised both Mo and Ni such that the resulting concentrations were below the limits established in the abovementioned 2003 EC Decision. Precipitation may be responsible for the fixation of Mo and Ni in the FA: portlandite aggregates as Ca(MoO4) and NiMoO4, respectively. The findings of this novel study support the use of this aggregate to reduce FA pollutants, which will be of particular interest to nations that remain largely coal/petroleum coke-dependant.


Assuntos
Cinza de Carvão/análise , Coque/análise , Poluentes Ambientais/análise , Poluição Ambiental/prevenção & controle , Molibdênio/química , Níquel/química , Poluição Ambiental/análise
2.
J Environ Manage ; 280: 111699, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33272656

RESUMO

This paper tries to analyse the technical and economic performance of a full-scale passive Disperse Alkaline Substrate (DAS) treatment plant steadily operating for 28 months (840 days) to treat extremely acidic and metal rich mine waters in the Iberian Pyrite Belt (SW Spain). For the first time, an economic evaluation of this technology and its comparison with other passive treatments is reported. During this period, around 56,000 m3 of mine waters have been treated, without significant clogging or exhaustion of the alkaline substrate. The efficiency of the system is demonstrated by a significant decrease in the average net acidity (from 2005 to -43 mg/L as CaCO3 equivalent) and the total elimination of Al, Cu, REY, Zn, As, Cr, Mo, V, Cd, Pb, Co and other trace metals. Water quality of the treated output discharge meets the threshold values for irrigation and drinking standards, except for Fe, Mn and sulphate. The accumulation of elements of economic interest in the waste (e.g., 32 t of Fe, 6.1 t of Al, 0.8 t of Cu, 0.8 t of Zn, 39.4 kg of REE, 20 kg of Co or 1 kg of Sc), easily extractable with diluted acids, may turn a hazardous waste into a valuable resource. The benefits associated with the revalorization of this metal-rich waste could reach a total of 27478 USD, but is more reliably estimated to be around 8243 USD due to technologic limitations. This benefit would help to defray the maintenance costs (8428 €) and make DAS an economically self-sustainable treatment. The annual treatment cost for DAS was 0.27 €/m3, being the lowest value found among other reported conventional passive schemes, and from 8 to 12 times lower compared to active technologies. The results obtained prove that the DAS technology is the most technically and economically sustainable way to decontaminate acid and metal-rich mine waters in abandoned mines.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Metais/análise , Metais Pesados/análise , Mineração , Espanha , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 53(19): 11153-11161, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436961

RESUMO

Yttrium belongs to the rare earth elements (REEs) together with lanthanides and scandium. REEs are commonly used in modern technologies, and their limited supply has made it necessary to look for new alternative resources. Acid mine drainage (AMD) is a potential resource since it is moderately enriched in REEs. In fact, in passive remediation systems, which are implemented to minimize the environmental impacts of AMD, REEs are mainly retained in basaluminite, an aluminum hydroxysulfate precipitate. In this study, the solid and liquid speciation and the local structure of yttrium are studied in high-sulfate aqueous solutions, basaluminite standards, and samples from remediation columns using synchrotron-based techniques and molecular modeling. Pair distribution function (PDF) analyses and ab initio molecular dynamics density functional theory models of the yttrium sulfate solution show that the YSO4+ ion pair forms a monodentate inner-sphere complex. Extended X-ray absorption fine structure (EXAFS) and PDF analyses show that Y is retained by basaluminite, forming a monodentate inner-sphere surface complex on the aluminum hydroxide surface. EXAFS of the column samples shows that more than 72% of their signal is represented by the signal of basaluminite with which YSO4+ forms an inner-sphere complex. The atomic view of the REE configuration in AMD environments could facilitate a deeper research of REE recovery from waste generated in AMD remediation systems.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Ácidos , Mineração , Ítrio
4.
Environ Sci Technol ; 50(15): 8255-62, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27351211

RESUMO

Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited.


Assuntos
Poluentes Químicos da Água , Ítrio , Ácidos , Metais Terras Raras , Mineração
5.
Environ Sci Technol ; 46(14): 7890-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22702219

RESUMO

An unusual and different speciation of Hg in the outgoing gaseous stream of the flue gas desulfurization (OUT-FGD) system was revealed at two Spanish power plants (PP1 and PP2) equipped with a forced oxidation wet FGD system with water recirculation to the scrubber. At PP1 and PP2, a high proportion of Hg escapes from the electrostatic precipitator in gaseous form, Hg(2+) (75-86%) being the species that enters the FGD. At PP1 Hg(0) (71%) was the prevalent Hg OUT-FGD species, whereas at PP2 Hg(2+) was the prevalent Hg OUT-FGD species in 2007 (66%) and 2008 (87%). The unusual speciation of gaseous Hg OUT-FGD and the different Hg retentions between 2007 and 2008 at PP2 were attributable to the evaporation of HgCl(2) particles from the aqueous phase of gypsum slurry in the OUT-FGD gas and the Al additive used at PP2, respectively. The Al additive induced the retention of Hg as HgS in the 2007 FGD gypsum, thus reducing gaseous emissions of Hg in the OUT-FGD gas.


Assuntos
Carvão Mineral , Mercúrio/isolamento & purificação , Centrais Elétricas , Alumínio/química , Sulfato de Cálcio/química , Gases/análise , Transição de Fase , Enxofre/isolamento & purificação , Temperatura , Poluentes Químicos da Água/isolamento & purificação
6.
J Environ Manage ; 104: 93-100, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22484707

RESUMO

Acid mine drainage (AMD) from the Iberian Pyrite Belt has high acidity and metal concentrations. Earlier pilot experiments, based on limestone sand dispersed in wood shavings (dispersed alkaline substrate; DAS) have been shown to be an efficient treatment option. However, complete metal removal was not achieved, principally due to the high ferrous iron concentration in the inflow AMD. In order to oxidize and remove iron, a natural Fe-oxidizing lagoon (NFOL) was added prior to treatment with limestone-DAS. The NFOL comprises several pre-existing Fe-stromatolite terraces and cascades, and a lagoon with a volume of 100 m(3) built near the mine shaft. Downstream of the NFOL, the limestone-DAS treatment consists of two reactive tanks of 3 m(3) each filled with limestone-DAS reactive substrate, connected in series with two decantation ponds of 6 m(3) each and several oxidation cascades. The AMD emerging from the mine shaft displayed a pH near 3, a net acidity of 1800 mg/L as CaCO(3) equivalents, and mean concentrations of 440 mg/L Zn; 275 mg/L Fe (99% Fe(II)); 3600 mg/L SO(4); 250 mg/L Ca; 100 mg/L Al; 15 mg/L Mn; 5 mg/L Cu; and 0.1-1 mg/L As, Pb, Cr, Cd, Co, and Ni. The oxidation induced in the NFOL enhanced ferric iron concentration, showing an average of 65% oxidation and 38% retention during the monitoring period. The whole system removed a mean of 1350 mg/L net acidity as CaCO(3) equivalents (71% of inflow); corresponding to 100% of Fe, Al, Cu, Pb and As, and 6% of Zn.


Assuntos
Mineração , Carbonato de Cálcio/química , Cromo/química , Cobre/química , Monitoramento Ambiental , Ferro/química , Chumbo/química , Níquel/química
7.
Environ Sci Technol ; 45(18): 7826-33, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21819094

RESUMO

Synchrotron radiation-induced micro-X-ray analysis were applied to characterize the newly formed phases that precipitate in a passive treatment system using magnesium oxide to remove high concentrations of zinc (ca. 440 mg/L) and other minor metals from neutral pretreated waters in the Iberian Pyrite Belt (SW Iberian Peninsula). Micro-X-ray fluorescence (µ-XRF) maps of polished samples were used to find spatial correlations among metals, pinpointing zones of interest where micro-X-ray diffraction (µ-XRD) data were exploited to identify the mineral phases responsible for metal retention. This coupled technique identified hydrozincite (Zn(5)(CO(3))(2)(OH)(6)) and minor loseyite ((Mn,Zn)(7)(CO(3))(2)(OH)(10)) as the mineral sinks for Zn and also other potentially toxic elements such as Co and Ni. Although hydrozincite retains traces of Mn, this metal is mainly retained by precipitation of loseyite. The precipitation of zinc hydroxy-carbonates and their ability to uptake other metals (Mn, Co, and Ni) is hence of potential interest not only for the treatment of contaminated waters but also for the generation of a solid waste that could be exploited as a new Zn economic resource.


Assuntos
Resíduos Industriais/análise , Óxido de Magnésio/química , Metais/química , Mineração , Eliminação de Resíduos Líquidos/métodos , Compostos de Zinco/química , Precipitação Química , Metais/análise , Silício/análise , Espectrometria por Raios X , Síncrotrons , Difração de Raios X
8.
Sci Total Environ ; 764: 143796, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33387768

RESUMO

This paper addresses the behaviour of several technology critical metals (TCMs), i.e., rare earth elements (REEs), Y, Sc, Ga and Tl, in the Tinto River (SW Spain), quantifying their fluxes to the Atlantic Ocean and unravelling the governing geochemical processes controlling their solubility. To accomplish this goal, a high-resolution (2-24 h) sampling was performed during the hydrological year 2017/18. Mean dissolved concentrations of 380 µg/L of REE, 99 µg/L of Y, 15 µg/L of Sc, 9.2 µg/L of Ga and 4.8 µg/L of Tl were found. Most TCMs followed a behaviour similar to that of sulphate and base metals throughout the year, exhibiting a quasi-conservative behaviour due to acidic conditions. However, dissolved Tl concentrations seem to be strongly controlled by Tl incorporation onto secondary minerals and diatoms deposited on the riverbed, especially during the dry season. The remobilization of riverbed sediments led to the transport of significant amounts of TCMs associated with particulate matter, especially Al oxy-hydroxy-sulphates or Al-silicates rather than Fe precipitates (except for Tl and Ga). Around 5.8 t of REE, 1.3 t of Y, 248 kg of Sc, 139 kg of Ga and 138 kg of Tl were delivered annually in their dissolved forms by the Tinto River to the Atlantic Ocean, which constitutes around 0.09% of the dissolved global flux into the oceans of Y, 0.02% of the REE flux, 0.01% of the Ga flux and 0.001% of the Sc flux.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34199945

RESUMO

The most common reactive material used for the construction of a permeable reactive barrier (PRB) is zero valent iron (ZVI), however, its processing can generate corrosive effects that reduce the efficiency of the barrier. The present study makes a major contribution to understanding new reactive materials as natural and synthetic, easy to obtain, economical and environmentally friendly as possible substitutes for the traditional ZHV to be used as filters in the removal of three transition metals (Zn, Cu, Cd). To assess the ability to remove these pollutants, a series of batch and column tests were carried out at laboratory scale with these materials. Through BACH tests, four of seven substances with a removal percentage higher than 99% were prioritized (cabuya, natural clinoptilolite zeolites, sodium mordenite and mordenite). From this group of substances, column tests were performed where it is evidenced that cabuya fiber presents the lowest absorption time (≈189 h) while natural zeolite mordenite shows the highest time (≈833 h). The latter being the best option for the PRB design. The experimental values were also reproduced by the RETRASO code; through this program, the trend between the observed and simulated values with respect to the best reactive substance was corroborated.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 699: 134331, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31670212

RESUMO

The groundwater contamination by hexavalent chromium (Cr(VI)) in a site of the Matanza-Riachuelo River basin (MRB), Argentina, has been evaluated by determining the processes that control the natural mobility and attenuation of Cr(VI) in the presence of high nitrate (NO3-) contents. The groundwater Cr(VI) concentrations ranged between 1.9E-5 mM and 0.04 mM, while the NO3- concentrations ranged between 0.5 mM and 3.9 mM. In order to evaluate the natural attenuation of Cr(VI) and NO3- in the MRB groundwater, Cr and N isotopes were measured in these contaminants. In addition, laboratory batch experiments were performed to determine the isotope fractionation (ε) during the reduction of Cr(VI) under denitrifying conditions. While the Cr(VI) reduction rate is not affected by the presence of NO3-, the NO3- attenuation is slower in the presence of Cr(VI). Nevertheless, no significant differences on ε values were observed when testing the absence or presence of each contaminant. The ε53Cr determined in the batch experiments describe a two- stage trend, in which Stage I is characterized by ε53Cr ~-1.8‰ and Stage II by ε53Cr ~-0.9‰. The respective ε15NNO3 obtained is -23.9‰ whereas ε18ONO3 amount to -25.7‰. Using these ε values and a Rayleigh fractionation model we estimate that an average of 60% of the original Cr(VI) is removed from the groundwater of the contaminated site. Moreover, the average degree of NO3- attenuation by denitrification is found to be about 20%. This study provides valuable information about the dynamics of a complex system that can serve as a basis for efficient management of contaminated groundwater in the most populated and industrialized basin of Argentina.

11.
ACS Sens ; 4(12): 3156-3165, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31657207

RESUMO

The presence of high levels of arsenic in waters poses a threat to the human health in many countries all over the world. Effective surveillance programs of water quality require the implementation of in-field tests to assess early the presence of this metal ion and other contaminants. To date, there exist few market-available analytical approaches that suffer from important limitations related to cost, in addition to complex reactions, very long analysis times, and/or high limits of detection. This work describes a robust electrochemical sensor integrated into a modular microfluidic system that shows a clear potential to be deployed for the on-site monitoring of inorganic As(III) species. Flexible and transparent microfluidic modules are fabricated by rapid prototyping techniques and include different microfluidic components among them, flow cells where electrochemical sensors can be easily and reversibly inserted. The electrochemical sensor comprises a gold nanoparticle (AuNP)-modified gold thin-film electrode that is readily applied to the sensitive detection of As(III) by anodic stripping linear sweep voltammetry. The microfluidic system enables the automatic sensor calibration, sample uptake, and preconditioning as well as As(III) detection. The system response to As(III) is linear in a concentration range of 1-150 µg L-1, with a detection limit of 0.42 µg L-1, which is well below the threshold value of 10 µg L-1 set by the World Health Organization. Analysis of tap water and two water samples from two Argentinean aquifers, spiked with different As(III) concentrations, demonstrates the excellent performance of the system.


Assuntos
Arsênio/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Dispositivos Lab-On-A-Chip , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Reprodutibilidade dos Testes
12.
J Environ Qual ; 37(5): 1741-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18689735

RESUMO

Passive treatment systems based on the dissolution of coarse calcite grains are widely used to remediate acid mine drainage (AMD). Unfortunately, they tolerate only low metal concentrations or acidity loads, because they are prone to passivation (loss of reactivity due to coating) and/or clogging (loss of permeability) by precipitates. To overcome these problems, a dispersed alkaline substrate (DAS) composed of a fine-grained alkaline reagent (calcite sand) mixed with a coarse inert matrix (wood chips) was developed. The small grains provide a large reactive surface and dissolve almost completely before the growing layer of precipitates passivates the substrate, whereas the dispersion of nuclei for precipitation on the inert surfaces retards clogging. Chemical and hydraulic performance of DAS was investigated in two laboratory columns fed at different flow rates with natural AMD of pH 2.3 to 3.5 and inflow net acidity 1350 to 2300 mg/L as CaCO(3). The DAS columns removed 900 to 1600 mg/L net acidity, 3 to 4.5 times more than conventional passive treatment systems. Regardless of the flow rate employed, Al, Fe(III), Cu, and Pb were virtually eliminated. Minor Zn, Ni, and Cd were removed at low flow rates. High acidity removal is possible because these metals accumulate intentionally in DAS, and their precipitation promotes further calcite dissolution. During 15 mo, DAS operated without clogging at 120 g acidity/m(2).d, four times the loading rate recommended for conventional passive systems; DAS may therefore be capable of treating AMD at sites where influent chemistry precludes the use of other passive systems.


Assuntos
Metais/química , Mineração , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Fatores de Tempo
13.
Sci Total Environ ; 619-620: 587-599, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156277

RESUMO

The water drained in mining operations (galleries, shafts, open pits) usually comes from different sources. Evaluating the contribution of these sources is very often necessary for water management. To determine mixing ratios, a conventional mass balance is often used. However, the presence of more than two sources creates uncertainties in mass balance applications. Moreover, the composition of the end-members is not commonly known with certainty and/or can vary in space and time. In this paper, we propose a powerful tool for solving such problems and managing groundwater in mining sites based on multivariate statistical analysis. This approach was applied to the Cobre Las Cruces mining complex, the largest copper mine in Europe. There, the open pit water is a mixture of three end-members: runoff (RO), basal Miocene (Mb) and Paleozoic (PZ) groundwater. The volume of water drained from the Miocene base aquifer must be determined and compensated via artificial recharging to comply with current regulations. Through multivariate statistical analysis of samples from a regional field campaign, the compositions of PZ and Mb end-members were firstly estimated, and then used for mixing calculations at the open pit scale. The runoff end-member was directly determined from samples collected in interception trenches inside the open pit. The application of multivariate statistical methods allowed the estimation of mixing ratios for the hydrological years 2014-2015 and 2015-2016. Open pit water proportions have changed from 15% to 7%, 41% to 36%, and 44% to 57% for runoff, Mb and PZ end-members, respectively. An independent estimation of runoff based on the curve method yielded comparable results.

14.
Sci Total Environ ; 612: 985-994, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28892850

RESUMO

A reactive barrier that consisted of vegetable compost, iron oxide and clay was installed in an infiltration basin to enhance the removal of emerging organic compounds (EOCs) in the recharge water. First-order degradation rates and retardation factors were jointly estimated for 10 compounds using a multilayer reactive transport model, whose flow and conservative transport parameters were previously estimated using hydraulic head values and conservative tracer tests. Reactive transport parameters were automatically calibrated against the concentration of EOCs measured at nine monitoring points. The degradation rate of each compound was estimated for three zones defined according to the redox state, and retardation coefficients were estimated in two zones defined according to the organic matter content. The fastest degradation rates were obtained for the reactive barrier, and the estimated values were similar to or higher than those estimated in column and/or field experiments for most of the compounds (8/10). Estimated retardation coefficients in the reactive barrier were higher than in the rest of the aquifer in most cases (8/10) and higher than those values estimated in previous studies. Based on the results obtained in this study the reactive barrier seems to be able to enhance the removal of EOCs.

15.
Environ Sci Pollut Res Int ; 24(5): 4506-4516, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27943156

RESUMO

The Odiel River Basin (SW Spain) drains the central part of the Iberian Pyrite Belt (IPB), a world-class example of sulfide mining district and concomitantly of acid mine drainage (AMD) pollution. The severe AMD pollution and the incipient state of remediation strategies implemented in this region, coupled with the proximity of the deadline for compliance with the European Water Framework Directive (WFD), urge to develop a restoration and water resources management strategy. Furthermore, despite the presence of some reservoirs with acid waters in the Odiel basin, the construction of the Alcolea water reservoir has already started. On the basis of the positive results obtained after more than 10 years of developing a specific passive remediation technology (dispersed alkaline substrate (DAS)) for the highly polluted AMD of this region, a restoration strategy is proposed. The implementation of 13 DAS treatment plants in selected acid discharges along the Odiel and Oraque sub-basins and other restoration measurements of two acidic creeks is proposed as essential to obtain a good water quality in the future Alcolea reservoir. This restoration strategy is also suggested as an economically and environmentally sustainable approach to the extreme metal pollution affecting the waters of the region and could be considered the starting point for the future compliance with the WFD in the Odiel River Basin.


Assuntos
Mineração , Rios/química , Poluentes Químicos da Água/análise , Ácidos , Espanha
16.
Sci Total Environ ; 539: 427-435, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26379258

RESUMO

Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Mineração , Sulfetos , Poluentes Químicos da Água/análise , Recuperação e Remediação Ambiental/métodos , Rios/química , Espanha , Recursos Hídricos
17.
Sci Total Environ ; 541: 655-666, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26437343

RESUMO

High ammonium (NH4), arsenic (As) and boron (B) concentrations are found in aquifers worldwide and are often related to human activities. However, natural processes can also lead to groundwater quality problems. High NH4, As and B concentrations have been identified in the confined, deep portion of the Niebla-Posadas aquifer, which is near the Cobre Las Cruces (CLC) mining complex. The mine has implemented a Drainage and Reinjection System comprising two rings of wells around the open pit mine, were the internal ring drains and the external ring is used for water reinjection into the aquifer. Differentiating geogenic and anthropogenic sources and processes is therefore crucial to ensuring good management of groundwater in this sensitive area where groundwater is extensively used for agriculture, industry, mining and human supply. No NH4, As and B are found in the recharge area, but their concentrations increase with depth, salinity and residence time of water in the aquifer. The increased salinity down-flow is interpreted as the result of natural mixing between infiltrated meteoric water and the remains of connate waters (up to 8%) trapped within the pores. Ammonium and boron are interpreted as the result of marine solid organic matter degradation by the sulfate dissolved in the recharge water. The light δ(15)NNH4 values confirm that its origin is linked to marine organic matter. High arsenic concentrations in groundwater are interpreted as being derived from reductive dissolution of As-bearing goethite by dissolved organic matter. The lack of correlation between dissolved Fe and As is explained by the massive precipitation of siderite, which is abundantly found in the mineralization. Therefore, the presence of high arsenic, ammonium and boron concentrations is attributed to natural processes. Ammonium, arsenic, boron and salinity define three zones of groundwater quality: the first zone is close to the recharge area and contains water of sufficient quality for human drinking; the second zone is downflow and contains groundwater suitable for continuous irrigation but not drinkable due to high ammonium concentrations; and the third zone contains groundwater of elevated salinity (up to 5940 µS cm(-1)) and is not useable due to high ammonium, arsenic and boron concentrations.

18.
Sci Total Environ ; 562: 1-12, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27092416

RESUMO

The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years. Deeper extractions (3m above the bottom) would also improve the water quality by decreasing the hypoxic zone. However, extractions at the epilimnion would increase the amount of hypoxic water in the reservoir.


Assuntos
Hidrodinâmica , Ferro/química , Modelos Químicos , Poluentes Químicos da Água/química , Qualidade da Água , Clorofila , Clorofila A , Eutrofização , Mineração , Fósforo , Espanha , Poluentes Químicos da Água/análise
19.
Water Res ; 39(13): 2827-38, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15992854

RESUMO

The efficiency of the sulphate reducing bacteria-based in situ treatment of acid mine drainage is often limited by the low degradability of the current carbon sources, typically complex plant-derived materials. In such non-sulphate-reducing conditions, field and laboratory experiences have shown that mechanisms other than sulphide precipitation should be considered in the metal removal, i.e. metal (oxy)hydroxides precipitation, co-precipitation with these precipitates, and sorption onto the organic matter. The focus of the present paper was to present some laboratory data highlighting the Zn and Cu sorption on vegetal compost and to develop a general and simple model for the prediction of their distribution in organic-based passive remediation systems. The model considers two kinds of sorption sites ( succeeds SO(2)H(2)) and the existence of monodentate and bidentate metal-binding reactions, and it assumes that only free M(2+) species can sorb onto the compost surface. The acid-base properties of the compost were studied by means of potentiometric titrations in order to identify the nature of the involved surface functional groups and their density. The distribution coefficient (K(D)) for both Zn and Cu were determined from batch experiments as a function of pH and metal concentration. The model yielded the predominant surface complexes at the experimental conditions, being succeeds SO(2)Zn for Zn and succeeds SO(2)HCu(+) and ( succeeds SO(2)H)(2)Cu for Cu, with log K(M) values of -2.10, 3.36 and 4.65, respectively. The results presented in this study have demonstrated that the proposed model provides a good description of the sorption process of Zn and Cu onto the vegetal compost used in these experiments.


Assuntos
Cobre/isolamento & purificação , Modelos Químicos , Solo , Poluentes Químicos da Água/isolamento & purificação , Zinco/isolamento & purificação , Adsorção , Cobre/química , Resíduos Industriais , Mineração , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Zinco/química
20.
Sci Total Environ ; 512-513: 240-250, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25625636

RESUMO

A permeable reactive layer was installed at the floor of an infiltration basin. The reactive layer comprised 1) vegetable compost to provide a sorption surface for neutral organic compounds and to release easily degradable organic matter, thus generating a sequence of redox states, and 2) minor amounts of clay and iron oxide to increase sorption of cationic and anionic species, respectively. Field application of this design was successful in generating denitrification, and manganese-, and iron-reducing conditions beneath the basin. This, together with the increase in types of sorption sites, may explain the improved removal of three of the four selected pharmaceuticals compared with their behavior prior to installation of the layer. After installation of the reactive layer, atenolol concentrations were below the detection limits in the vadose zone. Moreover, concentrations of gemfibrozil and cetirizine were reduced to 20% and 40% of their initial concentrations, respectively, after 200 h of residence time. In contrast, prior to installation of the reactive layer, the concentrations of these three pharmaceuticals in both the vadose zone and the aquifer were more than 60% of the initial concentration. Carbamazepine exhibited recalcitrant behavior both prior to and after the reactive barrier installation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Oxirredução , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA