Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(15): 152701, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929230

RESUMO

The discrepancy between observations from γ-ray astronomy of the ^{60}Fe/^{26}Al γ-ray flux ratio and recent calculations is an unresolved puzzle in nuclear astrophysics. The stellar ß-decay rate of ^{59}Fe is one of the major nuclear uncertainties impeding us from a precise prediction. The important Gamow-Teller strengths from the low-lying states in ^{59}Fe to the ^{59}Co ground state are measured for the first time using the exclusive measurement of the ^{59}Co(t,^{3}He+γ)^{59}Fe charge-exchange reaction. The new stellar decay rate of ^{59}Fe is a factor of 3.5±1.1 larger than the currently adopted rate at T=1.2 GK. Stellar evolution calculations show that the ^{60}Fe production yield of an 18 solar mass star is decreased significantly by 40% when using the new rate. Our result eliminates one of the major nuclear uncertainties in the predicted yield of ^{60}Fe and alleviates the existing discrepancy of the ^{60}Fe/^{26}Al ratio.

2.
Rev Sci Instrum ; 88(1): 013303, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147682

RESUMO

The operating principle and performances of the Multi-layer Thick Gaseous Electron Multiplier (M-THGEM) are presented. The M-THGEM is a novel hole-type gaseous electron multiplier produced by multi-layer printed circuit board technology; it consists of a densely perforated assembly of multiple insulating substrate sheets (e.g., FR-4), sandwiched between thin metallic-electrode layers. The electron avalanche processes occur along the successive multiplication stages within the M-THGEM holes, under the action of strong dipole fields resulting from the application of suitable potential differences between the electrodes. The present work focuses on the investigation of two different geometries: a two-layer M-THGEM (either as single or double-cascade detector) and a single three-layer M-THGEM element, tested in various low-pressure He-based gas mixtures. The intrinsically robust confinement of the avalanche volume within the M-THGEM holes provides an efficient reduction of the photon-induced secondary effects, resulting in a high-gain operation over a broad pressure range, even in pure elemental gas. The operational principle, main properties (maximum achievable gain, long-term stability, energy resolution, etc.) under different irradiation conditions, as well as capabilities and potential applications are presented and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA