Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Periodontal Res ; 58(1): 184-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36517910

RESUMO

BACKGROUND AND OBJECTIVES: Hertwig's epithelial root sheath (HERS) plays a role in root dentin formation. It produces the epithelial rests of Malassez (ERM) for the induction of periodontal tissue development during root formation. Although ERM is thought to be caused by epithelial-mesenchymal transition (EMT), the mechanism by which HERS is maintained as epithelium is unknown. Here, we aimed to elucidate the molecular mechanisms regulating the relationship between HERS maintenance and ERM development. METHODS: To understand the relationship between HERS and ERM development during root formation, we observed the developing molar root using cytokeratin14 (CK14) Cre/tdTomato mice via stereomicroscopy. The relationship between semaphorin and transforming growth factor (TGF) signaling in the maintenance of HERS and ERM development was examined using CK14cre/R26-tdTomato mice and a HERS cell line. RESULTS: tdTomato-positive cells were observed on HERS and the migrating cells from HERS. The migrating cells showed reduced E-cadherin expression. In contrast, HERS cells expressed semaphorin receptors and active RhoA. Semaphorin signaling was associated with RhoA activation and cell-cell adhesion, while TGF-ß induced decreased E-cadherin and active RhoA expression, and consequently enhanced cell migration. CONCLUSION: HERS induces root formation by controlling epithelial maintenance and EMT through the opposing effects of semaphorin and TGF-ß signaling.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta , Feminino , Camundongos , Animais , Fator de Crescimento Transformador beta/farmacologia , Células Epiteliais , Raiz Dentária/fisiologia , Caderinas/metabolismo
2.
Front Physiol ; 13: 1062042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523561

RESUMO

Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel mineralization in teeth and undergo characteristic cyclic changes in both morphology and function between ruffle-ended ameloblasts (RA) and smooth-ended ameloblasts (SA). Energy metabolism has recently emerged as a potential regulator of cell differentiation and fate decisions; however, its implication in M-ABs remains unclear. To elucidate the relationship between M-ABs and energy metabolism, we examined the expression pattern of energy metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell line with M-AB characteristics, we designed experiments to induce an energy metabolic shift by changes in oxygen concentration. We revealed that RA preferentially utilizes oxidative phosphorylation, whereas SA depends on glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells, hypoxia induced an energy metabolic shift toward a more glycolytic-dominant state, and the energy metabolic shift reduced alkaline phosphatase (ALP) activity and calcium transport and deposition with a change in calcium-related gene expression, implying a phenotype shift from RA to SA. Taken together, these results indicate that the energy metabolic state is an important determinant of the RA/SA phenotype in M-ABs. This study sheds light on the biological significance of energy metabolism in governing M-ABs, providing a novel molecular basis for understanding enamel mineralization and elucidating the pathogenesis of enamel hypomineralization.

3.
J Oral Biosci ; 64(1): 85-92, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074512

RESUMO

OBJECTIVES: Lysophosphatidic acid (LPA) is a potent bioactive phospholipid that exerts various functions upon binding to six known G protein-coupled receptors (LPA1-6); however; its role in a tooth remains unclear. This study aimed to explore the impact of the LPA/LPA receptor 6 (LPA6)/RhoA signaling axis on maturation stage ameloblasts (M-ABs), which are responsible for enamel mineralization. METHODS: The expression of LPA6 and LPA-producing synthetic enzymes during ameloblast differentiation was explored through immunobiological analysis of mouse incisors and molars. To elucidate the role of LPA6 in ameloblasts, incisors of LPA6 KO mice were analyzed. In vitro experiments using ameloblast cell lines were performed to validate the function of LPA-LPA6-RhoA signaling in ameloblasts. RESULTS: LPA6 and LPA-producing enzymes were strongly expressed in M-ABs. In LPA6 knockout mice, M-ABs exhibited abnormal morphology with the loss of cell polarity, and an abnormal enamel epithelium containing cyst-like structures was formed. Moreover, the expression of E-cadherin and zonula occludens-1 (ZO-1) significantly decreased in M-ABs. In vitro experiments demonstrated that LPA upregulated the expression of E-cadherin, ZO-1, and filamentous actin (F-actin) at the cellular membrane, whereas LPA6 knockdown decreased their expression and changed cell morphology. Furthermore, we showed that RhoA signaling mediates LPA-LPA6-induced junctional complexes. CONCLUSIONS: This study demonstrated that LPA-LPA6-RhoA signaling is essential for establishing proper cell morphology and polarity, via cell-cell junction and actin cytoskeleton expression and stability, of M-ABs. These results highlight the biological significance of bioactive lipids in a tooth, providing a novel molecular regulatory mechanism of ameloblasts.


Assuntos
Ameloblastos , Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Proteína rhoA de Ligação ao GTP , Ameloblastos/metabolismo , Amelogênese , Animais , Caderinas/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA