RESUMO
Most patients with acute myeloid leukemia (AML) can only be cured when allogeneic hematopoietic stem-cell transplantation induces a graft-versus-leukemia immune response (GVL). Although the role of T cells and natural killer cells in tumor immunology has been established, less is known about the contribution of B cells. From B cells of high-risk patients with AML with potent and lasting GVL responses, we isolated monoclonal antibodies directed against antigens expressed on the cell surface of AML cells but not on normal hematopoietic and nonhematopoietic cells. A number of these donor-derived antibodies recognized the U5 snRNP200 complex, a component of the spliceosome that in normal cells is found in the cell. In AML however, the U5 snRNP200 complex is exposed on the cell membrane of leukemic blasts. U5 snRNP200 complex-specific antibodies induced death of AML cells in an Fc receptor-dependent way in the absence of cytotoxic leukocytes or complement. In an AML mouse model, treatment with U5 snRNP200 complex-specific antibodies led to significant tumor growth inhibition. Thus, donor-derived U5 snRNP200 complex-recognizing AML-specific antibodies may contribute to antitumor responses.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Apoptose/imunologia , Efeito Enxerto vs Leucemia/imunologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Ribonucleoproteína Nuclear Pequena U5/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Animais , Terapia Combinada , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Camundongos SCID , Pessoa de Meia-Idade , PrognósticoRESUMO
Bispecific antibodies have therapeutic potential by expanding the functions of conventional antibodies. Many different formats of bispecific antibodies have meanwhile been developed. Most are genetic modifications of the antibody backbone to facilitate incorporation of two different variable domains into a single molecule. Here, we present a bispecific format where we have fused two full-sized IgG antibodies via their C termini using sortase transpeptidation and click chemistry to create a covalently linked IgG antibody heterodimer. By linking two potent anti-influenza A antibodies together, we have generated a full antibody dimer with bispecific activity that retains the activity and stability of the two fusion partners.
Assuntos
Anticorpos Biespecíficos/biossíntese , Química Click , Vírus da Influenza A/imunologia , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Linfócitos B/virologia , Western Blotting , Células Cultivadas , Dimerização , Eletroforese em Gel de Poliacrilamida , Humanos , Vírus da Influenza A/classificação , Ressonância de Plasmônio de SuperfícieRESUMO
The homeostatic control mechanisms regulating human leukocyte numbers are poorly understood. Here, we assessed the role of phagocytes in this process using human immune system (HIS) BALB/c Rag2(-/-)IL-2Rγc(-/-) mice in which human leukocytes are generated from transplanted hematopoietic progenitor cells. Interactions between signal regulatory protein alpha (SIRPα; expressed on phagocytes) and CD47 (expressed on hematopoietic cells) negatively regulate phagocyte activity of macrophages and other phagocytic cells. We previously showed that B cells develop and survive robustly in HIS mice, whereas T and natural killer (NK) cells survive poorly. Because human CD47 does not interact with BALB/c mouse SIRPα, we introduced functional CD47/SIRPα interactions in HIS mice by transducing mouse CD47 into human progenitor cells. Here, we show that this procedure resulted in a dramatic and selective improvement of progenitor cell engraftment and human T- and NK-cell homeostasis in HIS mouse peripheral lymphoid organs. The amount of engrafted human B cells also increased but much less than that of T and NK cells, and total plasma IgM and IgG concentrations increased 68- and 35-fold, respectively. Whereas T cells exhibit an activated/memory phenotype in the absence of functional CD47/SIRPα interactions, human T cells accumulated as CD4(+) or CD8(+) single-positive, naive, resting T cells in the presence of functional CD47/SIRPα interactions. Thus, in addition to signals mediated by T cell receptor (TCR)/MHC and/or IL/IL receptor interactions, sensing of cell surface CD47 expression by phagocyte SIRPα is a critical determinant of T- and NK-cell homeostasis under steady-state conditions in vivo.
Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Homeostase , Células Matadoras Naturais/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Células Matadoras Naturais/citologia , Cinética , Linfopoese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Ligação Proteica , Receptores de Interleucina-2/deficiência , Receptores de Interleucina-2/metabolismo , Baço/citologia , Baço/imunologia , Análise de Sobrevida , Linfócitos T/citologia , Timo/metabolismo , Transplante HeterólogoRESUMO
Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality. No vaccine is available to prevent HCV infection. To design an effective vaccine, understanding immunity against HCV is necessary. The memory B cell repertoire was characterized from an intravenous drug user who spontaneously cleared HCV infection 25 years ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immortalized B cells were used to study antibody-mediated immunity against the HCV E1E2 glycoproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epitope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized epitope II and domain B. These data show that a subject, who spontaneously cleared HCV infection 25 years ago, still has circulating memory B cells that are able to secrete broadly neutralizing antibodies. Presence of such memory B cells strengthens the argument for undertaking the development of an HCV vaccine.
Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/isolamento & purificação , Hepatite C/sangue , Proteínas do Envelope Viral/imunologia , Adulto , Linfócitos B/citologia , Linfócitos B/imunologia , Epitopos/imunologia , Genótipo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/terapia , Humanos , Masculino , Abuso de Substâncias por Via Intravenosa/virologia , Vacinas contra Hepatite Viral/imunologiaRESUMO
Highly active antiretroviral therapy (HAART) has significantly improved the quality of life and the life expectancy of HIV-infected individuals. Still, drug-induced side effects and emergence of drug-resistant viral variants remain important issues that justify the exploration of alternative therapeutic options. One strategy consists of a gene therapy based on RNA interference to induce the sequence-specific degradation of the HIV-1 RNA genome. We have selected four potent short hairpin RNA (shRNA) candidates targeting the viral capside, integrase, protease and tat/rev open-reading frames and screened the safety of them during human hematopoietic cell development, both in vitro and in vivo. Although the four shRNA candidates appeared to be safe in vitro, one shRNA candidate impaired the in vivo development of the human immune system in Balb/c Rag2(-/-)IL-2Rγc(-/-) (BRG) mice. The three remaining shRNA candidates were combined into one single lentiviral vector (LV), and safety of the shRNA combination during human hematopoietic cell development was confirmed. Overall, we demonstrate here the preclinical in vivo safety of a LV expressing three shRNAs against HIV-1, which is proposed for a future Phase I clinical trial.Molecular Therapy-Nucleic Acids (2013) 2, e120; doi:10.1038/mtna.2013.48; published online 3 September 2013.