Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Med Genet A ; 191(7): 1978-1983, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37134191

RESUMO

Uniparental disomy (UPD) is the inheritance of both chromosomal homologs from one parent. Depending on the chromosome involved and the parental origin, UPD may result in phenotypic abnormalities due to aberrant methylation patterns or unmasking recessive conditions in isodisomic regions. UPD primarily originates from somatic rescue of a single meiotically-derived aneuploidy, most commonly a trisomy. Double UPD is exceedingly rare and triple UPD has not been previously described. Here, we report two unrelated clinical cases with UPD of multiple chromosomes; an 8-month-old male with maternal isodisomy of chromosome 7 and paternal isodisomy of chromosome 9, and a 4-week-old female with mixed paternal UPD for chromosomes 4, 10, and 14. These cases also demonstrate that although extremely rare, the detection of AOH on two or more chromosomes may warrant additional clinical and laboratory investigation such as methylation and STR marker analysis, especially when involving chromosomes known to be associated with imprinting disorders.


Assuntos
Aberrações Cromossômicas , Dissomia Uniparental , Masculino , Feminino , Humanos , Dissomia Uniparental/genética , Fenótipo , Trissomia , Cromossomos , Impressão Genômica
2.
Genet Med ; 23(4): 653-660, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33299146

RESUMO

PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína 25 Associada a Sinaptossoma/genética , Pré-Escolar , Epilepsia/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo
4.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497358

RESUMO

Hirschsprung disease (HSCR) is the most frequent developmental anomaly of the enteric nervous system, with an incidence of 1 in 5000 live births. Chronic intestinal pseudo-obstruction (CIPO) is less frequent and classified as neurogenic or myogenic. Isolated HSCR has an oligogenic inheritance with RET as the major disease-causing gene, while CIPO is genetically heterogeneous, caused by mutations in smooth muscle-specific genes. Here, we describe a series of patients with developmental disorders including gastrointestinal dysmotility, and investigate the underlying molecular bases. Trio-exome sequencing led to the identification of biallelic variants in ERBB3 and ERBB2 in 8 individuals variably associating HSCR, CIPO, peripheral neuropathy, and arthrogryposis. Thorough gut histology revealed aganglionosis, hypoganglionosis, and intestinal smooth muscle abnormalities. The cell type-specific ErbB3 and ErbB2 function was further analyzed in mouse single-cell RNA sequencing data and in a conditional ErbB3-deficient mouse model, revealing a primary role for ERBB3 in enteric progenitors. The consequences of the identified variants were evaluated using quantitative real-time PCR (RT-qPCR) on patient-derived fibroblasts or immunoblot assays on Neuro-2a cells overexpressing WT or mutant proteins, revealing either decreased expression or altered phosphorylation of the mutant receptors. Our results demonstrate that dysregulation of ERBB3 or ERBB2 leads to a broad spectrum of developmental anomalies, including intestinal dysmotility.


Assuntos
Deficiências do Desenvolvimento/genética , Pseudo-Obstrução Intestinal/genética , Mutação , Neuregulina-1/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Adolescente , Animais , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Feminino , Motilidade Gastrointestinal/genética , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Humanos , Recém-Nascido , Pseudo-Obstrução Intestinal/patologia , Masculino , Camundongos , Modelos Moleculares , Linhagem , Fenótipo , Gravidez , Receptor ErbB-2/química , Receptor ErbB-3/química , Receptor ErbB-3/deficiência
5.
Mol Syndromol ; 7(1): 37-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27194972

RESUMO

The ability to interrogate the genome via chromosomal microarray and sequencing-based technologies has accelerated the ability to rapidly and accurately define etiologies as well as new candidate genes related to genetic conditions. We describe a male patient with a lethal presentation of a multiple congenital anomaly syndrome that appeared consistent with a ciliopathy phenotype. The patient was found to have a novel maternally inherited 1.9-Mb X chromosome deletion including 4 known genes. Presently, the biological functions of these genes are not well delineated. However, at least one of these genes may be a promising candidate gene for this pattern of anomalies based on the function of related genes and information from publicly available copy number variant databases of control and affected individuals. These genes would bear further scrutiny in larger cohorts of patients with similar phenotypes.

6.
PLoS One ; 9(7): e101782, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25004007

RESUMO

Uveal coloboma is a potentially blinding congenital ocular malformation caused by failure of the optic fissure to close during development. Although mutations in numerous genes have been described, these account for a minority of cases, complicating molecular diagnosis and genetic counseling. Here we describe a key role of aldh7a1 as a gene necessary for normal eye development. We show that morpholino knockdown of aldh7a1 in zebrafish causes uveal coloboma and misregulation of nlz1, another known contributor to the coloboma phenotype, as well as skeletal abnormalities. Knockdown of aldh7a1 leads to reduced cell proliferation in the optic cup of zebrafish, delaying the approximation of the edges of the optic fissure. The aldh7a1 morphant phenotype is partially rescued by co-injection of nlz1 mRNA suggesting that nlz1 is functionally downstream of aldh7a1 in regulating cell proliferation in the optic cup. These results support a role of aldh7a1 in ocular development and skeletal abnormalities in zebrafish.


Assuntos
Aldeído Desidrogenase/genética , Extremidades/embriologia , Olho/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Olho/embriologia , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Fenótipo , Tretinoína/farmacologia , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA