RESUMO
Rare coding variants that substantially affect function provide insights into the biology of a gene1-3. However, ascertaining the frequency of such variants requires large sample sizes4-8. Here we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. In total, 23% of the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. The catalogue includes more than 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss of function (LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously assessed as tolerant and 1,153 that lack established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions that are depleted of missense variants despite being tolerant of pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this resource of coding variation from the RGC-ME dataset publicly accessible through a variant allele frequency browser.
Assuntos
Exoma , Variação Genética , Proteínas , Humanos , Alelos , Exoma/genética , Sequenciamento do Exoma , Frequência do Gene , Variação Genética/genética , Heterozigoto , Mutação com Perda de Função/genética , Mutação de Sentido Incorreto/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Sítios de Splice de RNA/genética , Medicina de PrecisãoRESUMO
The Mexico City Prospective Study is a prospective cohort of more than 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City1. Here we generated genotype and exome-sequencing data for all individuals and whole-genome sequencing data for 9,950 selected individuals. We describe high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Indigenous American, European and African ancestry, with extensive admixture from Indigenous populations in central, southern and southeastern Mexico. Indigenous Mexican segments of the genome had lower levels of coding variation but an excess of homozygous loss-of-function variants compared with segments of African and European origin. We estimated ancestry-specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Indigenous Mexican ancestry at exome variants, all available through a public browser. Using whole-genome sequencing, we developed an imputation reference panel that outperforms existing panels at common variants in individuals with high proportions of central, southern and southeastern Indigenous Mexican ancestry. Our work illustrates the value of genetic studies in diverse populations and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States, where the Hispanic/Latino population is predominantly of Mexican descent.
Assuntos
Sequenciamento do Exoma , Genoma Humano , Genótipo , Hispânico ou Latino , Adulto , Humanos , África/etnologia , América/etnologia , Europa (Continente)/etnologia , Frequência do Gene/genética , Genética Populacional , Genoma Humano/genética , Técnicas de Genotipagem , Hispânico ou Latino/genética , Homozigoto , Mutação com Perda de Função/genética , México , Estudos ProspectivosRESUMO
Gene-based burden tests are a popular and powerful approach for analysis of exome-wide association studies. These approaches combine sets of variants within a gene into a single burden score that is then tested for association. Typically, a range of burden scores are calculated and tested across a range of annotation classes and frequency bins. Correlation between these tests can complicate the multiple testing correction and hamper interpretation of the results. We introduce a method called the sparse burden association test (SBAT) that tests the joint set of burden scores under the assumption that causal burden scores act in the same effect direction. The method simultaneously assesses the significance of the model fit and selects the set of burden scores that best explain the association at the same time. Using simulated data, we show that the method is well calibrated and highlight scenarios where the test outperforms existing gene-based tests. We apply the method to 73 quantitative traits from the UK Biobank, showing that SBAT is a valuable additional gene-based test when combined with other existing approaches. This test is implemented in the REGENIE software.
Assuntos
Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Análise dos Mínimos Quadrados , Software , Modelos Genéticos , Exoma/genética , Variação Genética , Simulação por ComputadorRESUMO
A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.
Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , África/etnologia , Ásia/etnologia , Asma/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , Oftalmopatias/genética , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Hepatopatias/genética , Masculino , Mutação , Neoplasias/genética , Característica Quantitativa Herdável , Reino UnidoRESUMO
The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
Assuntos
Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , Mutação com Perda de Função/genética , Fenótipo , Idoso , Densidade Óssea/genética , Colágeno Tipo VI/genética , Demografia , Feminino , Genes BRCA1 , Genes BRCA2 , Genótipo , Humanos , Canais Iônicos/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Penetrância , Fragmentos de Peptídeos/genética , Reino Unido , Varizes/genética , Proteínas Ativadoras de ras GTPase/genéticaRESUMO
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, and results are publicly available through the Regeneron Genetics Center COVID-19 Results Browser.
Assuntos
COVID-19/diagnóstico , COVID-19/genética , Sequenciamento do Exoma , Exoma/genética , Predisposição Genética para Doença , Hospitalização/estatística & dados numéricos , COVID-19/imunologia , COVID-19/terapia , Feminino , Humanos , Interferons/genética , Masculino , Prognóstico , SARS-CoV-2 , Tamanho da AmostraRESUMO
Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are biomarkers for liver health. Here we report the largest genome-wide association analysis to date of serum ALT and AST levels in over 388k people of European ancestry from UK biobank and DiscovEHR. Eleven million imputed markers with a minor allele frequency (MAF) ≥ 0.5% were analyzed. Overall, 300 ALT and 336 AST independent genome-wide significant associations were identified. Among them, 81 ALT and 61 AST associations are reported for the first time. Genome-wide interaction study identified 9 ALT and 12 AST independent associations significantly modified by body mass index (BMI), including several previously reported potential liver disease therapeutic targets, for example, PNPLA3, HSD17B13, and MARC1. While further work is necessary to understand the effect of ALT and AST-associated variants on liver disease, the weighted burden of significant BMI-modified signals is significantly associated with liver disease outcomes. In summary, this study identifies genetic associations which offer an important step forward in understanding the genetic architecture of serum ALT and AST levels. Significant interactions between BMI and genetic loci not only highlight the important role of adiposity in liver damage but also shed light on the genetic etiology of liver disease in obese individuals.
Assuntos
Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Índice de Massa Corporal , Estudo de Associação Genômica Ampla , HumanosRESUMO
Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10-7) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic associations requires further study.
Assuntos
Exoma/genética , Proteínas Nucleares/genética , Agregação Plaquetária/genética , Adulto , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Pessoa de Meia-IdadeRESUMO
Clopidogrel is one of the most commonly used therapeutics for the secondary prevention of cardiovascular events in patients with acute coronary syndromes. However, considerable interindividual variation in clopidogrel response has been documented, resulting in suboptimal therapy and an increased risk of recurrent events for some patients. In this investigation, we carried out the first genome-wide association study of circulating clopidogrel active metabolite levels in 513 healthy participants to directly measure clopidogrel pharmacokinetics. We observed that the CYP2C19 locus was the strongest genetic determinant of active metabolite formation (P=9.5×10). In addition, we identified novel genome-wide significant variants on chromosomes 3p25 (rs187941554, P=3.3×10) and 17q11 (rs80343429, P=1.3×10), as well as six additional loci that showed suggestive evidence of association (P≤1.0×10). Four of these loci showed nominal associations with on-clopidogrel ADP-stimulated platelet aggregation (P≤0.05). Evaluation of clopidogrel active metabolite concentration may help identify novel genetic determinants of clopidogrel response, which has implications for the development of novel therapeutics and improved antiplatelet treatment for at-risk patients in the future.
Assuntos
Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 3/genética , Citocromo P-450 CYP2C19/genética , Inibidores da Agregação Plaquetária/administração & dosagem , Ticlopidina/análogos & derivados , Adulto , Clopidogrel , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Inibidores da Agregação Plaquetária/farmacocinética , Polimorfismo de Nucleotídeo Único , Ticlopidina/administração & dosagem , Ticlopidina/farmacocinéticaRESUMO
INTRODUCTION: Tobacco use is a complex behavior. The Old Order Amish community offers unique advantages for the study of tobacco use because of homogenous ancestral background, sociocultural similarity, sex-specific social norms regarding tobacco use, and large family size. Tobacco use in the Old Order Amish community is almost exclusively confined to males. METHODS: We examined characteristics of tobacco use and familial aggregation among 1,216 Amish males from cross-sectional prospectively collected data. Outcomes examined included ever using tobacco regularly, current use, quantity of use, duration of use, and frequency of use. RESULTS: Sixteen percent of Amish men were current tobacco users, with the majority reporting cigar use only. Higher rates of tobacco use were found among sons of fathers who smoked compared with sons of fathers who did not smoke (46% vs. 22%, p < .001) as well as among brothers of index cases who smoked compared with brothers of index cases who did not smoke (61% vs. 29%, p < .001). After controlling for shared household effects and age, heritability accounted for 66% of the variance in ever smoking regularly (p = .045). CONCLUSIONS: The familial patterns of tobacco use observed among Amish men highlight the important role of family in propagating tobacco use and support the usefulness of this population for future genetic studies of nicotine addiction.
Assuntos
Amish/estatística & dados numéricos , Fumar/etnologia , Uso de Tabaco/etnologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Características da Família , Pai , Humanos , Masculino , Pessoa de Meia-Idade , Pennsylvania/epidemiologia , Irmãos , Adulto JovemRESUMO
Whole-genome sequencing (WGS), whole-exome sequencing (WES) and array genotyping with imputation (IMP) are common strategies for assessing genetic variation and its association with medically relevant phenotypes. To date, there has been no systematic empirical assessment of the yield of these approaches when applied to hundreds of thousands of samples to enable the discovery of complex trait genetic signals. Using data for 100 complex traits from 149,195 individuals in the UK Biobank, we systematically compare the relative yield of these strategies in genetic association studies. We find that WGS and WES combined with arrays and imputation (WES + IMP) have the largest association yield. Although WGS results in an approximately fivefold increase in the total number of assayed variants over WES + IMP, the number of detected signals differed by only 1% for both single-variant and gene-based association analyses. Given that WES + IMP typically results in savings of lab and computational time and resources expended per sample, we evaluate the potential benefits of applying WES + IMP to larger samples. When we extend our WES + IMP analyses to 468,169 UK Biobank individuals, we observe an approximately fourfold increase in association signals with the threefold increase in sample size. We conclude that prioritizing WES + IMP and large sample sizes rather than contemporary short-read WGS alternatives will maximize the number of discoveries in genetic association studies.
RESUMO
The genetic factors of stroke in South Asians are largely unexplored. Exome-wide sequencing and association analysis (ExWAS) in 75 K Pakistanis identified NM_000435.3(NOTCH3):c.3691 C > T, encoding the missense amino acid substitution p.Arg1231Cys, enriched in South Asians (alternate allele frequency = 0.58% compared to 0.019% in Western Europeans), and associated with subcortical hemorrhagic stroke [odds ratio (OR) = 3.39, 95% confidence interval (CI) = [2.26, 5.10], p = 3.87 × 10-9), and all strokes (OR [CI] = 2.30 [1.77, 3.01], p = 7.79 × 10-10). NOTCH3 p.Arg231Cys was strongly associated with white matter hyperintensity on MRI in United Kingdom Biobank (UKB) participants (effect [95% CI] in SD units = 1.1 [0.61, 1.5], p = 3.0 × 10-6). The variant is attributable for approximately 2.0% of hemorrhagic strokes and 1.1% of all strokes in South Asians. These findings highlight the value of diversity in genetic studies and have major implications for genomic medicine and therapeutic development in South Asian populations.
Assuntos
Predisposição Genética para Doença , Receptor Notch3 , Acidente Vascular Cerebral , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma , Frequência do Gene , Imageamento por Ressonância Magnética , Mutação de Sentido Incorreto , Paquistão/etnologia , Polimorfismo de Nucleotídeo Único , Receptor Notch3/genética , População do Sul da Ásia/genética , Acidente Vascular Cerebral/genética , Reino Unido/epidemiologia , Biobanco do Reino UnidoRESUMO
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
RESUMO
Heart failure is a leading cause of cardiovascular morbidity and mortality. However, the contribution of common genetic variation to heart failure risk has not been fully elucidated, particularly in comparison to other common cardiometabolic traits. We report a multi-ancestry genome-wide association study meta-analysis of all-cause heart failure including up to 115,150 cases and 1,550,331 controls of diverse genetic ancestry, identifying 47 risk loci. We also perform multivariate genome-wide association studies that integrate heart failure with related cardiac magnetic resonance imaging endophenotypes, identifying 61 risk loci. Gene-prioritization analyses including colocalization and transcriptome-wide association studies identify known and previously unreported candidate cardiomyopathy genes and cellular processes, which we validate in gene-expression profiling of failing and healthy human hearts. Colocalization, gene expression profiling, and Mendelian randomization provide convergent evidence for the roles of BCKDHA and circulating branch-chain amino acids in heart failure and cardiac structure. Finally, proteome-wide Mendelian randomization identifies 9 circulating proteins associated with heart failure or quantitative imaging traits. These analyses highlight similarities and differences among heart failure and associated cardiovascular imaging endophenotypes, implicate common genetic variation in the pathogenesis of heart failure, and identify circulating proteins that may represent cardiomyopathy treatment targets.
Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Insuficiência Cardíaca/genética , Coração , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Predisposição Genética para DoençaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10-8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10-13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.
Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco , SARS-CoV-2/genéticaRESUMO
Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case-control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals.
Assuntos
Biologia Computacional , Estudo de Associação Genômica Ampla , Genômica , Estudos de Casos e Controles , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Humanos , Modelos Logísticos , Aprendizado de Máquina , Fenótipo , Reprodutibilidade dos TestesRESUMO
AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10-8 under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Feminino , Genômica , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , PrognósticoRESUMO
A major challenge in genetic association studies is that most associated variants fall in the non-coding part of the human genome. We searched for variants associated with bone mineral density (BMD) after enriching the discovery cohort for loss-of-function (LoF) mutations by sequencing a subset of the Nord-Trøndelag Health Study, followed by imputation in the remaining sample (N = 19,705), and identified ten known BMD loci. However, one previously unreported variant, LoF mutation in MEPE, p.(Lys70IlefsTer26, minor allele frequency [MAF] = 0.8%), was associated with decreased ultradistal forearm BMD (P-value = 2.1 × 10-18), and increased osteoporosis (P-value = 4.2 × 10-5) and fracture risk (P-value = 1.6 × 10-5). The MEPE LoF association with BMD and fractures was further evaluated in 279,435 UK (MAF = 0.05%, heel bone estimated BMD P-value = 1.2 × 10-16, any fracture P-value = 0.05) and 375,984 Icelandic samples (MAF = 0.03%, arm BMD P-value = 0.12, forearm fracture P-value = 0.005). Screening for the MEPE LoF mutations before adulthood could potentially prevent osteoporosis and fractures due to the lifelong effect on BMD observed in the study. A key implication for precision medicine is that high-impact functional variants missing from the publicly available cosmopolitan panels could be clinically more relevant than polygenic risk scores.
Assuntos
Densidade Óssea/genética , Proteínas da Matriz Extracelular/genética , Fraturas Ósseas/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Glicoproteínas/genética , Fosfoproteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Biologia Computacional , Feminino , Frequência do Gene , Testes Genéticos , Genoma Humano , Humanos , Islândia , Masculino , Pessoa de Meia-Idade , Osteoporose/genéticaRESUMO
AIMS: Clopidogrel is prescribed for the prevention of atherothrombotic events. While investigations have identified genetic determinants of inter-individual variability in on-treatment platelet inhibition (e.g. CYP2C19*2), evidence that these variants have clinical utility to predict major adverse cardiovascular events (CVEs) remains controversial. METHODS AND RESULTS: We assessed the impact of 31 candidate gene polymorphisms on adenosine diphosphate (ADP)-stimulated platelet reactivity in 3391 clopidogrel-treated coronary artery disease patients of the International Clopidogrel Pharmacogenomics Consortium (ICPC). The influence of these polymorphisms on CVEs was tested in 2134 ICPC patients (N = 129 events) in whom clinical event data were available. Several variants were associated with on-treatment ADP-stimulated platelet reactivity (CYP2C19*2, P = 8.8 × 10-54; CES1 G143E, P = 1.3 × 10-16; CYP2C19*17, P = 9.5 × 10-10; CYP2B6 1294 + 53 C > T, P = 3.0 × 10-4; CYP2B6 516 G > T, P = 1.0 × 10-3; CYP2C9*2, P = 1.2 × 10-3; and CYP2C9*3, P = 1.5 × 10-3). While no individual variant was associated with CVEs, generation of a pharmacogenomic polygenic response score (PgxRS) revealed that patients who carried a greater number of alleles that associated with increased on-treatment platelet reactivity were more likely to experience CVEs (ß = 0.17, SE 0.06, P = 0.01) and cardiovascular-related death (ß = 0.43, SE 0.16, P = 0.007). Patients who carried eight or more risk alleles were significantly more likely to experience CVEs [odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.14-2.76, P = 0.01] and cardiovascular death (OR = 4.39, 95% CI 1.35-14.27, P = 0.01) compared to patients who carried six or fewer of these alleles. CONCLUSION: Several polymorphisms impact clopidogrel response and PgxRS is a predictor of cardiovascular outcomes. Additional investigations that identify novel determinants of clopidogrel response and validating polygenic models may facilitate future precision medicine strategies.