Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(22): 8819-8833, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30975900

RESUMO

Loss of long-chain acyl-CoA synthetase isoform-1 (ACSL1) in mouse skeletal muscle (Acsl1M-/-) severely reduces acyl-CoA synthetase activity and fatty acid oxidation. However, the effects of decreased fatty acid oxidation on skeletal muscle function, histology, use of alternative fuels, and mitochondrial function and morphology are unclear. We observed that Acsl1M-/- mice have impaired voluntary running capacity and muscle grip strength and that their gastrocnemius muscle contains myocytes with central nuclei, indicating muscle regeneration. We also found that plasma creatine kinase and aspartate aminotransferase levels in Acsl1M-/- mice are 3.4- and 1.5-fold greater, respectively, than in control mice (Acsl1flox/flox ), indicating muscle damage, even without exercise, in the Acsl1M-/- mice. Moreover, caspase-3 protein expression exclusively in Acsl1M-/- skeletal muscle and the presence of cleaved caspase-3 suggested myocyte apoptosis. Mitochondria in Acsl1M-/- skeletal muscle were swollen with abnormal cristae, and mitochondrial biogenesis was increased. Glucose uptake did not increase in Acsl1M-/- skeletal muscle, and pyruvate oxidation was similar in gastrocnemius homogenates from Acsl1M-/- and control mice. The rate of protein synthesis in Acsl1M-/- glycolytic muscle was 2.1-fold greater 30 min after exercise than in the controls, suggesting resynthesis of proteins catabolized for fuel during the exercise. At this time, mTOR complex 1 was activated, and autophagy was blocked. These results suggest that fatty acid oxidation is critical for normal skeletal muscle homeostasis during both rest and exercise. We conclude that ACSL1 deficiency produces an overall defect in muscle fuel metabolism that increases protein catabolism, resulting in exercise intolerance, muscle weakness, and myocyte apoptosis.


Assuntos
Aminoácidos/metabolismo , Coenzima A Ligases/genética , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Animais , Apoptose , Aspartato Aminotransferases/metabolismo , Caspase 3/metabolismo , Coenzima A Ligases/deficiência , Creatina Quinase/metabolismo , Metabolismo dos Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Oxirredução , Condicionamento Físico Animal , Regulação para Cima
2.
Front Physiol ; 14: 1111647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969580

RESUMO

Across the globe, millions of people are affected by muco-obstructive pulmonary diseases like cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In MOPDs, the airway mucus becomes hyperconcentrated, increasing viscoelasticity and impairing mucus clearance. Research focused on treatment of MOPDs requires relevant sources of airway mucus both as a control sample type and as a basis for manipulation to study the effects of additional hyperconcentration, inflammatory milieu, and biofilm growth on the biochemical and biophysical properties of mucus. Endotracheal tube mucus has been identified as a prospective source of native airway mucus given its several advantages over sputum and airway cell culture mucus such as ease of access and in vivo production that includes surface airway and submucosal gland secretions. Still, many ETT samples suffer from altered tonicity and composition from either dehydration, salivary dilution, or other contamination. Herein, the biochemical compositions of ETT mucus from healthy human subjects were determined. Samples were characterized in terms of tonicity, pooled, and restored to normal tonicity. Salt-normalized ETT mucus exhibited similar concentration-dependent rheologic properties as originally isotonic mucus. This rheology agreed across spatial scales and with previous reports of the biophysics of ETT mucus. This work affirms previous reports of the importance of salt concentration on mucus rheology and presents methodology to increase yield native airway mucus samples for laboratory use and manipulation.

3.
ACS Infect Dis ; 6(7): 1940-1950, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32510928

RESUMO

Pseudomonas aeruginosa is the main contributor to the morbidity and mortality of cystic fibrosis (CF) patients. Chronic respiratory infections are rarely eradicated due to protection from CF mucus and the biofilm matrix. The composition of the biofilm matrix determines its viscoelastic properties and affects antibiotic efficacy. Nitric oxide (NO) can both disrupt the physical structure of the biofilm and eradicate interior colonies. The effects of a CF-like growth environment on P. aeruginosa biofilm susceptibility to NO were investigated using parallel plate macrorheology and particle tracking microrheology. Biofilms grown in the presence of mucins and DNA contained greater concentrations of DNA in the matrix and exhibited concomitantly larger viscoelastic moduli compared to those grown in tryptic soy broth. Greater viscoelastic moduli correlated with increased tolerance to tobramycin and colistin. Remarkably, NO-releasing cyclodextrins eradicated all biofilms at the same concentration. The capacity of NO-releasing cyclodextrins to eradicate P. aeruginosa biofilms irrespective of matrix composition suggests that NO-based therapies may be superior antibiofilm treatments compared to conventional antibiotics.


Assuntos
Ciclodextrinas , Pseudomonas aeruginosa , Biofilmes , Humanos , Óxido Nítrico , Tobramicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA