Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(31): 17142-17151, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31339149

RESUMO

In this work we compute high-coverage hydrogen adsorption energies and geometries on the stepped platinum surfaces Pt(211) and Pt(533) which contain a (100)-step type and the Pt(221) and Pt(553) surface with a (111) step edge. We discuss these results in relation to ultra-high-vacuum temperature programmed desorption (TPD) data to elucidate the origin of the desorption features. Our results indicated that on surfaces with a (100)-step type, two distinct ranges of adsorption energy for the step and terrace are observed, which mirrors the TPD spectra for which we find a clear separation of the desorption peaks. For the (111) step type, the TPD spectra show much less separation of the step and terrace features, which we assign to the low individual adsorption energies for H atoms on this step edge. From our results we obtain a much clearer understanding of the surface-hydrogen bonding at high coverages and the origin of the different TPD features present for the two step types studied.


Assuntos
Teoria da Densidade Funcional , Hidrogênio/química , Platina/química , Adsorção , Cristalização , Ligação de Hidrogênio , Temperatura , Termodinâmica
2.
Faraday Discuss ; 210(0): 301-315, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29987308

RESUMO

The "hydrogen region" of platinum is a powerful tool to structurally characterize nanostructured platinum electrodes. In recent years, the understanding of this hydrogen region has improved considerably: on Pt(111) sites, there is indeed only hydrogen adsorption, while on step sites, the hydrogen region involves the replacement of adsorbed hydrogen by adsorbed hydroxyl which interacts with co-adsorbed cations. However, the hydrogen region features an enigmatic and less well-understood "third hydrogen peak", which develops on oxidatively roughened platinum electrodes as well as on platinum electrodes with a high (110) step density that have been subjected to a high concentration of hydrogen. In this paper, we present evidence that the peak involves surface-adsorbed hydrogen (instead of subsurface hydrogen) on a locally "reconstructed" (110)-type surface site. This site is unstable when the hydrogen is oxidatively removed. The cation sensitivity of the third hydrogen peak appears different from other step-related peaks, suggesting that the chemistry involved may still be subtly different from the other features in the hydrogen region.

3.
Phys Rev Lett ; 116(13): 136101, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081992

RESUMO

The interaction of platinum with water plays a key role in (electro)catalysis. Herein, we describe a combined theoretical and experimental study that resolves the preferred adsorption structure of water wetting the Pt(111)-step type with adjacent (111) terraces. Double stranded lines wet the step edge forming water tetragons with dissimilar hydrogen bonds within and between the lines. Our results qualitatively explain experimental observations of water desorption and impact our thinking of solvation at the Pt electrochemical interface.

4.
Phys Chem Chem Phys ; 17(13): 8530-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25268577

RESUMO

We have examined water desorption from Pt(111) terraces of varying width and its dependence on precoverage by deuterium (D) with temperature programmed desorption studies. We observe distinct water desorption from (100) steps and (111) terraces, with steps providing adsorption sites with a higher binding energy than terraces. Preadsorption of D at the steps causes annihilation of water stabilization at the steps, while it also causes an initial stabilization of water on the (111) terraces. When the (111) terraces also become precovered with D, this water stabilization trend reverses on all surfaces. Destabilization continues for stepped surfaces containing up to 8-atom wide (111) terraces with a (100) step type and these become hydrophobic, in contrast to surfaces with a (110) step type and with the infinite (111) terrace. Our results illustrate how surface defects and a delicate balance between intermolecular forces and the adsorption energy govern hydrophobic vs. hydrophilic behavior, and that the influence of steps on the adsorption of water on nano-structured platinum surfaces has a very long-ranged character.


Assuntos
Platina/química , Água/química , Adsorção , Deutério/química , Propriedades de Superfície , Temperatura
5.
J Phys Chem Lett ; 7(9): 1682-5, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27093477

RESUMO

We study the influence of substrate structure on desorption and crystallization of water deposited at 100 K on platinum. We use ultrathin water films adsorbed to well-defined but highly corrugated Pt(211) and Pt(221) surfaces. Desorption spectra reveal variations in the wetting and subsequent layers that critically depend on step type. Crystallization is induced at much lower substrate temperatures as compared to Pt(111). The crystalline ice (CI)-like layer is also significantly more stable on stepped surfaces as evidenced by a higher desorption energy. Crystallinity of the CI-like layers is maintained over a thickness that varies strongly with step type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA