Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 195(2): 1161-1179, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38366582

RESUMO

Paramutation is the transfer of mitotically and meiotically heritable silencing information between two alleles. With paramutation at the maize (Zea mays) booster1 (b1) locus, the low-expressed B' epiallele heritably changes the high-expressed B-I epiallele into B' with 100% frequency. This requires specific tandem repeats and multiple components of the RNA-directed DNA methylation pathway, including the RNA-dependent RNA polymerase (encoded by mediator of paramutation1, mop1), the second-largest subunit of RNA polymerase IV and V (NRP(D/E)2a, encoded by mop2), and the largest subunit of RNA Polymerase IV (NRPD1, encoded by mop3). Mutations in mop genes prevent paramutation and release silencing at the B' epiallele. In this study, we investigated the effect of mutations in mop1, mop2, and mop3 on chromatin structure and DNA methylation at the B' epiallele, and especially the regulatory hepta-repeat 100 kb upstream of the b1 gene. Mutations in mop1 and mop3 resulted in decreased repressive histone modifications H3K9me2 and H3K27me2 at the hepta-repeat. Associated with this decrease were partial activation of the hepta-repeat enhancer function, formation of a multi-loop structure, and elevated b1 expression. In mop2 mutants, which do not show elevated b1 expression, H3K9me2, H3K27me2 and a single-loop structure like in wild-type B' were retained. Surprisingly, high CG and CHG methylation levels at the B' hepta-repeat remained in all three mutants, and CHH methylation was low in both wild type and mutants. Our results raise the possibility of MOP factors mediating RNA-directed histone methylation rather than RNA-directed DNA methylation at the b1 locus.


Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Histonas , Mutação , Zea mays , Zea mays/genética , Zea mays/metabolismo , Metilação de DNA/genética , Histonas/metabolismo , Histonas/genética , Mutação/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Alelos , Metilação , Cromatina/genética , Cromatina/metabolismo
2.
Plant Cell ; 26(12): 4903-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25465407

RESUMO

RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production.


Assuntos
Metilação de DNA , DNA de Plantas/química , Zea mays/genética , Centrômero/metabolismo , Cromatina/metabolismo , Eucromatina/metabolismo , Inativação Gênica , Genoma de Planta , Heterocromatina/metabolismo , Histonas/metabolismo , RNA Interferente Pequeno/fisiologia
3.
PLoS Genet ; 9(10): e1003773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146624

RESUMO

Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1) are the tandem repeats sufficient for paramutation, 2) do they need to be in an allelic position to mediate paramutation, and 3) is there an association between the ability to mediate paramutation and repeat DNA methylation levels? Paramutation was achieved using multiple transgenes containing the b1 tandem repeats, including events with tandem repeats of only one half of the repeat unit (413 bp), demonstrating that these sequences are sufficient for paramutation and an allelic position is not required for the repeats to communicate. Furthermore, the transgenic tandem repeats increased the expression of a reporter gene in maize, demonstrating the repeats contain transcriptional regulatory sequences. Transgene-mediated paramutation required the mediator of paramutation1 gene, which is necessary for endogenous paramutation, suggesting endogenous and transgene-mediated paramutation both require an RNA-mediated transcriptional silencing pathway. While all tested repeat transgenes produced small interfering RNAs (siRNAs), not all transgenes induced paramutation suggesting that, as with endogenous alleles, siRNA production is not sufficient for paramutation. The repeat transgene-induced silencing was less efficiently transmitted than silencing induced by the repeats of endogenous b1 alleles, which is always 100% efficient. The variability in the strength of the repeat transgene-induced silencing enabled testing whether the extent of DNA methylation within the repeats correlated with differences in efficiency of paramutation. Transgene-induced paramutation does not require extensive DNA methylation within the transgene. However, increased DNA methylation within the endogenous b1 repeats after transgene-induced paramutation was associated with stronger silencing of the endogenous allele.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Sequências de Repetição em Tandem/genética , Transcrição Gênica , Alelos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Mutação , Plantas Geneticamente Modificadas/genética , RNA/genética , RNA Interferente Pequeno/genética , Zea mays/genética , Zea mays/metabolismo
4.
Plant J ; 63(3): 366-78, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20444233

RESUMO

Paramutation is the transfer of epigenetic information between alleles that leads to a heritable change in expression of one of these alleles. Paramutation at the tissue-specifically expressed maize (Zea mays) b1 locus involves the low-expressing B' and high-expressing B-I allele. Combined in the same nucleus, B' heritably changes B-I into B'. A hepta-repeat located 100-kb upstream of the b1 coding region is required for paramutation and for high b1 expression. The role of epigenetic modifications in paramutation is currently not well understood. In this study, we show that the B' hepta-repeat is DNA-hypermethylated in all tissues analyzed. Importantly, combining B' and B-I in one nucleus results in de novo methylation of the B-I repeats early in plant development. These findings indicate a role for hepta-repeat DNA methylation in the establishment and maintenance of the silenced B' state. In contrast, nucleosome occupancy, H3 acetylation, and H3K9 and H3K27 methylation are mainly involved in tissue-specific regulation of the hepta-repeat. Nucleosome depletion and H3 acetylation are tissue-specifically regulated at the B-I hepta-repeat and associated with enhancement of b1 expression. H3K9 and H3K27 methylation are tissue-specifically localized at the B' hepta-repeat and reinforce the silenced B' chromatin state. The B' coding region is H3K27 dimethylated in all tissues analyzed, indicating a role in the maintenance of the silenced B' state. Taken together, these findings provide insight into the mechanisms underlying paramutation and tissue-specific regulation of b1 at the level of chromatin structure.


Assuntos
Metilação de DNA , Histonas/metabolismo , Mutação , Nucleossomos/metabolismo , Imunoprecipitação da Cromatina , Genes de Plantas , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Zea mays/genética
5.
J Vis Exp ; (133)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29658919

RESUMO

When generating transgenic plants, generally the objective is to have stable expression of a transgene. This requires a single, intact integration of the transgene, as multi-copy integrations are often subjected to gene silencing. The Gateway-compatible binary vector based on bacterial artificial chromosomes (pBIBAC-GW), like other pBIBAC derivatives, allows the insertion of single-copy transgenes with high efficiency. As an improvement to the original pBIBAC, a Gateway cassette has been cloned into pBIBAC-GW, so that the sequences of interest can now be easily incorporated into the vector transfer DNA (T-DNA) by Gateway cloning. Commonly, the transformation with pBIBAC-GW results in an efficiency of 0.2-0.5%, whereby half of the transgenics carry an intact single-copy integration of the T-DNA. The pBIBAC-GW vectors are available with resistance to Glufosinate-ammonium or DsRed fluorescence in seed coats for selection in plants, and with resistance to kanamycin as a selection in bacteria. Here, a series of protocols is presented that guide the reader through the process of generating transgenic plants using pBIBAC-GW: starting from recombining the sequences of interest into the pBIBAC-GW vector of choice, to plant transformation with Agrobacterium, selection of the transgenics, and testing the plants for intactness and copy number of the inserts using DNA blotting. Attention is given to designing a DNA blotting strategy to recognize single- and multi-copy integrations at single and multiple loci.


Assuntos
Vetores Genéticos/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transformação Genética/genética
6.
Plant Cell ; 21(3): 832-42, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19336692

RESUMO

This work examines the involvement of chromatin looping in the transcriptional regulation of two epialleles of the maize (Zea mays) b1 gene, B-I and B'. These two epialleles are tissue-specifically regulated and are involved in paramutation. B-I and B' are expressed at high and low levels, respectively. A hepta-repeat approximately 100 kb upstream of the transcription start site (TSS) is required for both paramutation and high b1 expression. Using chromosome conformation capture, we show that the hepta-repeat physically interacts with the TSS region in a tissue- and expression level-specific manner. Multiple repeats are required to stabilize this interaction. High b1 expression is mediated by a multiloop structure; besides the hepta-repeat, other sequence regions physically interact with the TSS as well, and these interactions are epiallele- and expression level-specific. Formaldehyde-assisted isolation of regulatory elements uncovered multiple interacting regions as potentially regulatory.


Assuntos
Alelos , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Conformação de Ácido Nucleico , Zea mays/genética , Cromatina/genética , Distribuição Tecidual , Zea mays/anatomia & histologia
7.
Appl Environ Microbiol ; 68(2): 831-7, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11823225

RESUMO

Purification of xylulose 5-phosphate phosphoketolase (XpkA), the central enzyme of the phosphoketolase pathway (PKP) in lactic acid bacteria, and cloning and sequence analysis of the encoding gene, xpkA, from Lactobacillus pentosus MD363 are described. xpkA encodes a 788-amino-acid protein with a calculated mass of 88,705 Da. Expression of xpkA in Escherichia coli led to an increase in XpkA activity, while an xpkA knockout mutant of L. pentosus lost XpkA activity and was not able to grow on energy sources that are fermented via the PKP, indicating that xpkA encodes an enzyme with phosphoketolase activity. A database search revealed that there are high levels of similarity between XpkA and a phosphoketolase from Bifidobacterium lactis and between XpkA and a (putative) protein present in a number of evolutionarily distantly related organisms (up to 54% identical residues). Expression of xpkA in L. pentosus was induced by sugars that are fermented via the PKP and was repressed by glucose mediated by carbon catabolite protein A (CcpA) and by the mannose phosphoenolpyruvate phosphotransferase system. Most of the residues involved in correct binding of the cofactor thiamine pyrophosphate (TPP) that are conserved in transketolase, pyruvate decarboxylase, and pyruvate oxidase were also conserved at a similar position in XpkA, implying that there is a similar TPP-binding fold in XpkA.


Assuntos
Aldeído Liases/genética , Aldeído Liases/metabolismo , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Lactobacillus/enzimologia , Pentosefosfatos/metabolismo , Aldeído Liases/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Deleção de Genes , Glucose/metabolismo , Lactobacillus/genética , Manose/metabolismo , Dados de Sequência Molecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA