Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Open Res Eur ; 2: 66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645279

RESUMO

High-performance data analytics (HPDA) is a current trend in e-science research that aims to integrate traditional HPC with recent data analytic frameworks. Most of the work done in this field has focused on improving data analytic frameworks by implementing their engines on top of HPC technologies such as Message Passing Interface. However, there is a lack of integration from an application development perspective. HPC workflows have their own parallel programming models, while data analytic (DA) algorithms are mainly implemented using data transformations and executed with frameworks like Spark. Task-based programming models (TBPMs) are a very efficient approach for implementing HPC workflows. Data analytic transformations can also be decomposed as a set of tasks and implemented with a task-based programming model. In this paper, we present a methodology to develop HPDA applications on top of TBPMs that allow developers to combine HPC workflows and data analytic transformations seamlessly. A prototype of this approach has been implemented on top of the PyCOMPSs task-based programming model to validate two aspects: HPDA applications can be seamlessly developed and have better performance than Spark. We compare our results using different programs. Finally, we conclude with the idea of integrating DA into HPC applications and evaluation of our method against Spark.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35935573

RESUMO

Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excellence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics. This article is categorized under:Data Science > Computer Algorithms and ProgrammingData Science > Databases and Expert SystemsMolecular and Statistical Mechanics > Molecular Dynamics and Monte-Carlo Methods.

3.
Nat Commun ; 12(1): 2436, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893285

RESUMO

Genome-wide association studies (GWAS) are not fully comprehensive, as current strategies typically test only the additive model, exclude the X chromosome, and use only one reference panel for genotype imputation. We implement an extensive GWAS strategy, GUIDANCE, which improves genotype imputation by using multiple reference panels and includes the analysis of the X chromosome and non-additive models to test for association. We apply this methodology to 62,281 subjects across 22 age-related diseases and identify 94 genome-wide associated loci, including 26 previously unreported. Moreover, we observe that 27.7% of the 94 loci are missed if we use standard imputation strategies with a single reference panel, such as HRC, and only test the additive model. Among the new findings, we identify three novel low-frequency recessive variants with odds ratios larger than 4, which need at least a three-fold larger sample size to be detected under the additive model. This study highlights the benefits of applying innovative strategies to better uncover the genetic architecture of complex diseases.


Assuntos
Envelhecimento , Doença/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Fatores Etários , Frequência do Gene , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Genótipo , Haplótipos , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Sci Data ; 6(1): 169, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506435

RESUMO

In the recent years, the improvement of software and hardware performance has made biomolecular simulations a mature tool for the study of biological processes. Simulation length and the size and complexity of the analyzed systems make simulations both complementary and compatible with other bioinformatics disciplines. However, the characteristics of the software packages used for simulation have prevented the adoption of the technologies accepted in other bioinformatics fields like automated deployment systems, workflow orchestration, or the use of software containers. We present here a comprehensive exercise to bring biomolecular simulations to the "bioinformatics way of working". The exercise has led to the development of the BioExcel Building Blocks (BioBB) library. BioBB's are built as Python wrappers to provide an interoperable architecture. BioBB's have been integrated in a chain of usual software management tools to generate data ontologies, documentation, installation packages, software containers and ways of integration with workflow managers, that make them usable in most computational environments.

5.
Nat Commun ; 9(1): 2162, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849136

RESUMO

In the originally published version of this Article, the affiliation details for Santi González, Jian'an Luan and Claudia Langenberg were inadvertently omitted. Santi González should have been affiliated with 'Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, 08034 Barcelona, Spain', and Jian'an Luan and Claudia Langenberg should have been affiliated with 'MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK'. Furthermore, the abstract contained an error in the SNP ID for the rare variant in chromosome Xq23, which was incorrectly given as rs146662057 and should have been rs146662075. These errors have now been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 9(1): 321, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358691

RESUMO

The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.


Assuntos
Cromossomos Humanos X/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Redes Reguladoras de Genes/genética , Genótipo , Humanos , Resistência à Insulina/genética , Masculino , Modelos Genéticos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA