Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1546, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413604

RESUMO

A fundamental question in neurodevelopmental biology is how flexibly the nervous system changes during development. To address this, we reconstructed the chemical connectome of dauer, an alternative developmental stage of nematodes with distinct behavioral characteristics, by volumetric reconstruction and automated synapse detection using deep learning. With the basic architecture of the nervous system preserved, structural changes in neurons, large or small, were closely associated with connectivity changes, which in turn evoked dauer-specific behaviors such as nictation. Graph theoretical analyses revealed significant dauer-specific rewiring of sensory neuron connectivity and increased clustering within motor neurons in the dauer connectome. We suggest that the nervous system in the nematode has evolved to respond to harsh environments by developing a quantitatively and qualitatively differentiated connectome.


Assuntos
Conectoma , Nematoides , Animais , Caenorhabditis elegans/fisiologia , Sinapses , Neurônios Motores
2.
Nat Commun ; 15(1): 289, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177169

RESUMO

The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.


Assuntos
Encéfalo , Imageamento Tridimensional , Animais , Camundongos , Imageamento Tridimensional/métodos , Microscopia Eletrônica , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA