Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14370, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661097

RESUMO

PURPOSE: To evaluate the accuracy of different dosimeters and the treatment planning system (TPS) for assessing the skin dose due to the electron streaming effect (ESE) on a 1.5 T magnetic resonance (MR)-linac. METHOD: Skin dose due to the ESE on an MR-linac (Unity, Elekta) was investigated using a solid water phantom rotated 45° in the x-y plane (IEC61217) and centered at the isocenter. The phantom was irradiated with 1 × 1, 3 × 3, 5 × 5, 10 × 10, and 22 × 22 cm2 fields, gantry at 90°. Out-of-field doses (OFDs) deposited by electron streams generated at the entry and exit surface of the angled phantom were measured on the surface of solid water slabs placed ±20.0 cm from the isocenter along the x-direction. A high-resolution MOSkin™ detector served as a benchmark due to its shallower depth of measurement that matches the International Commission on Radiological Protection (ICRP) recommended depth for skin dose assessment (0.07 mm). MOSkin™ doses were compared to EBT3 film, OSLDs, a diamond detector, and the TPS where the experimental setup was modeled using two separate calculation parameters settings: a 0.1 cm dose grid with 0.2% statistical uncertainty (0.1 cm, 0.2%) and a 0.2 cm dose grid with 3.0% statistical uncertainty (0.2 cm, 3.0%). RESULTS: OSLD, film, the 0.1 cm, 0.2%, and 0.2 cm, 3.0% TPS ESE doses, underestimated skin doses measured by the MOSkin™ by as much as -75.3%, -7.0%, -24.7%, and -41.9%, respectively. Film results were most similar to MOSkin™ skin dose measurements. CONCLUSIONS: These results show that electron streams can deposit significant doses outside the primary field and that dosimeter choice and TPS calculation settings greatly influence the reported readings. Due to the steep dose gradient of the ESE, EBT3 film remains the choice for accurate skin dose assessment in this challenging environment.

2.
Phys Eng Sci Med ; 45(2): 429-441, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35380366

RESUMO

During the adaptive workflow associated with MRgRT, a secondary dose calculation is required and MU2net (DOSIsoft, France) is one commercial option. The suitability of MU2net to be used in conjunction with the online Monaco treatment planning system of the Elekta Unity (Elekta AB, Stockholm, Sweden), is evaluated in this work. Monaco and MU2net point doses are compared for various fields on and off axis and at different SSDs. To investigate the comparative effects of attenuation due to the cryostat, couch and posterior coil, measured, MU2net and Monaco dose outputs at the isocentre, as a function of gantry angle, were compared. Point doses for the beams of nine step and shoot IMRT (SSIMRT) test plans (courtesy Elekta) were calculated with Monaco v5.4 and compared to corresponding doses computed with MU2net. In addition, Monaco v5.4 and MU2net point doses were compared for 1552 beams treated on the Unity at our facility. For the on-axis fields investigated the agreement between MU2net and measured data is acceptable. MU2net and Monaco point doses for the Elekta SSIMRT test plans were within ± 5.0% and ± 6.4% for beams delivered from gantry zero and at planned beam angles, respectively. For the 1552 beams delivered approximately 80.0% of MU2net and Monaco point doses agree within ± 5.0%, therefore it is recommended to correlate MU2net Dose Reference Points (DRPs) with pre and post treatment dosimetry verification. Computational accuracy of MU2net could be enhanced with improved modelling of attenuation due to the couch, cryostat and posterior MR imaging coil.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA