Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13151-13162, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687869

RESUMO

The nanoscopic layer of water that directly hydrates biological membranes plays a critical role in maintaining the cell structure, regulating biochemical processes, and managing intermolecular interactions at the membrane interface. Therefore, comprehending the membrane structure, including its hydration, is essential for understanding the chemistry of life. While cholesterol is a fundamental lipid molecule in mammalian cells, influencing both the structure and dynamics of cell membranes, its impact on the structure of interfacial water has remained unknown. We used surface-specific vibrational sum-frequency generation spectroscopy to study the effect of cholesterol on the structure and hydration of monolayers of the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and egg sphingomyelin (SM). We found that for the unsaturated lipid DOPC, cholesterol intercalates in the membrane without significantly changing the orientation of the lipid tails and the orientation of the water molecules hydrating the headgroups of DOPC. In contrast, for the saturated lipids DPPC and SM, the addition of cholesterol leads to clearly enhanced packing and ordering of the hydrophobic tails. It is also observed that the orientation of the water hydrating the lipid headgroups is enhanced upon the addition of cholesterol. These results are important because the orientation of interfacial water molecules influences the cell membranes' dipole potential and the strength and specificity of interactions between cell membranes and peripheral proteins and other biomolecules. The lipid nature-dependent role of cholesterol in altering the arrangement of interfacial water molecules offers a fresh perspective on domain-selective cellular processes, such as protein binding.


Assuntos
Membrana Celular , Colesterol , Água , Colesterol/química , Água/química , Membrana Celular/química , Membrana Celular/metabolismo , Fosfatidilcolinas/química , Esfingomielinas/química , 1,2-Dipalmitoilfosfatidilcolina/química
2.
J Am Chem Soc ; 145(12): 6682-6690, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940392

RESUMO

Proton-transfer reactions in water are essential to chemistry and biology. Earlier studies reported on aqueous proton-transfer mechanisms by observing light-triggered reactions of strong (photo)acids and weak bases. Similar studies on strong (photo)base-weak acid reactions would also be of interest because earlier theoretical works found evidence for mechanistic differences between aqueous H+ and OH- transfer. In this work, we study the reaction of actinoquinol, a water-soluble strong photobase, with the water solvent and the weak acid succinimide. We find that in aqueous solutions containing succinimide, the proton-transfer reaction proceeds via two parallel and competing reaction channels. In the first channel, actinoquinol extracts a proton from water, after which the newly generated hydroxide ion is scavenged by succinimide. In the second channel, succinimide forms a hydrogen-bonded complex with actinoquinol and the proton is transferred directly. Interestingly, we do not observe proton conduction in water-separated actinoquinol-succinimide complexes, which makes the newly studied strong base-weak acid reaction essentially different from previously studied strong acid-weak base reactions.

3.
Phys Chem Chem Phys ; 24(17): 10134-10139, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416809

RESUMO

We study the properties of formate (HCOO-) and acetate (CH3COO-) ions at the surface of water using heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spectroscopy. For both ions we observe a response of the symmetric (νs) and antisymmetric (νas) vibrations of the carboxylate group. The spectra further show that for both formate and acetate the carboxylate group is oriented toward the bulk, with a higher degree of orientation for acetate than for formate. We found that increasing the formate and acetate bulk concentrations up to 4.5 m does not change the orientation of the formate and acetate ions at the surface and does not lead to saturation of the surface density of ions.


Assuntos
Ácidos Carboxílicos , Água , Formiatos , Íons/química , Análise Espectral , Água/química
4.
Phys Chem Chem Phys ; 24(11): 7164, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35260872

RESUMO

Correction for 'The molecular structure of the surface of water-ethanol mixtures' by Johannes Kirschner et al., Phys. Chem. Chem. Phys., 2021, 23, 11568-11578, DOI: 10.1039/D0CP06387H.

5.
J Chem Phys ; 156(9): 094501, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259905

RESUMO

We study the vibrational population relaxation and mutual interaction of the symmetric stretch (νs) and antisymmetric stretch (νas) vibrations of the carboxylate anion groups of acetate and terephthalate ions in aqueous solution by femtosecond two-dimensional infrared spectroscopy. By selectively exciting and probing the νs and νas vibrations, we find that the interaction of the two vibrations involves both the anharmonic coupling of the vibrations and energy exchange between the excited states of the vibrations. We find that both the vibrational population relaxation and the energy exchange are faster for terephthalate than for acetate.

6.
J Am Chem Soc ; 143(37): 15103-15112, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498857

RESUMO

We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.

7.
Biomacromolecules ; 22(6): 2595-2603, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33957041

RESUMO

Antifreeze glycoproteins (AFGPs) are able to bind to ice, halt its growth, and are the most potent inhibitors of ice recrystallization known. The structural basis for AFGP's unique properties remains largely elusive. Here we determined the antifreeze activities of AFGP variants that we constructed by chemically modifying the hydroxyl groups of the disaccharide of natural AFGPs. Using nuclear magnetic resonance, two-dimensional infrared spectroscopy, and circular dichroism, the expected modifications were confirmed as well as their effect on AFGPs solution structure. We find that the presence of all the hydroxyls on the disaccharides is a requirement for the native AFGP hysteresis as well as the maximal inhibition of ice recrystallization. The saccharide hydroxyls are apparently as important as the acetyl group on the galactosamine, the α-linkage between the disaccharide and threonine, and the methyl groups on the threonine and alanine. We conclude that the use of hydrogen-bonding through the hydroxyl groups of the disaccharide and hydrophobic interactions through the polypeptide backbone are equally important in promoting the antifreeze activities observed in the native AFGPs. These important criteria should be considered when designing synthetic mimics.


Assuntos
Proteínas Anticongelantes , Dissacarídeos , Glicoproteínas , Ligação de Hidrogênio , Gelo , Espectroscopia de Ressonância Magnética
8.
Phys Chem Chem Phys ; 23(47): 27024-27030, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34846395

RESUMO

We study the molecular-scale properties of colloidal water-oil emulsions consisting of 120-290 nm oil droplets embedded in water. This type of emulsion can be prepared with low concentrations of surfactants and is usually kinetically stable. Even though colloidal water-oil emulsions are used ubiquitously, their molecular properties are still poorly understood. Here we study the orientational dynamics of water molecules in these emulsions using polarization resolved pump-probe infrared spectroscopy, for varying surfactant concentrations, droplet sizes, and temperatures. We find that the majority of the water molecules reorients with the same time constant as in bulk water, while a small fraction of the water molecules reorients on a much longer time scale. These slowly reorienting water molecules are interacting with the surface of the oil droplets. The fraction of slowly orienting water molecules is proportional to the oil volume fraction, and shows a negligible dependence on the average droplet size. This finding indicates that the total surface area of the oil droplets is quite independent of the average droplet size, which indicates that the larger oil droplets are quite corrugated, showing large protrusions into the water phase.

9.
Phys Chem Chem Phys ; 23(19): 11568-11578, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33977931

RESUMO

Mixtures of water and alcohol exhibit an excess surface concentration of alcohol as a result of the amphiphilic nature of the alcohol molecule, which has important consequences for the physico-chemical properties of water-alcohol mixtures. Here we use a combination of intensity vibrational sum-frequency generation (VSFG) spectroscopy, heterodyne-detected VSFG (HD-VSFG), and core-level photoelectron spectroscopy (PES) to investigate the molecular properties of water-ethanol mixtures at the air-liquid interface. We find that increasing the ethanol concentration up to a molar fraction (MF) of 0.1 leads to a steep increase of the surface density of the ethanol molecules, and an increased ordering of the ethanol molecules at the surface. When the ethanol concentration is further increased, the surface density of ethanol remains more or less constant, while the orientation of the ethanol molecules becomes increasingly disordered. The used techniques of PES and VSFG provide complementary information on the density and orientation of ethanol molecules at the surface of water, thus providing new information on the molecular-scale properties of the surface of water-alcohol mixtures over a wide range of compositions. This information is invaluable in understanding the chemical and physical properties of water-alcohol mixtures.

10.
Phys Chem Chem Phys ; 22(37): 21334-21339, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32936152

RESUMO

We use polarization-resolved femtosecond pump-probe spectroscopy to investigate the vibrations of hydrated protons in anionic (AOT) and cationic (CTAB/hexanol) reverse micelles in the frequency range 2000-3500 cm-1. For small AOT micelles the dominant proton hydration structure consists of H3O+ with two OH groups donating hydrogen bonds to water molecules, and one OH group donating a weaker hydrogen bond to sulfonate. For cationic reverse micelles, we find that the absorption at frequencies >2500 cm-1 is dominated by asymmetric proton-hydration structures in which one of the OH groups of H3O+ is more weakly hydrogen-bonded to water than the other two OH groups.

11.
Phys Chem Chem Phys ; 22(35): 19940-19947, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32856626

RESUMO

We investigate the orientational dynamics of water molecules solvating phenolate ions using ultrafast vibrational spectroscopy and density functional theory-based molecular dynamics simulations. To assess the roles of the hydrophobic and hydrophilic parts of the anion, we also perform experiments and simulations on solutions of phenol. The experiments show that phenolate immobilizes (τor > 10 ps) 6.2 ± 0.5 water molecules beyond the first solvation shell of its oxygen atom, whereas phenol immobilizes only ∼2 water molecules, including the water molecules in its first solvation shell. The simulations reproduce the experiments very well, and show that phenolate causes a local ordering of the hydrogen-bond structure that extends beyond the first solvation shell, thus explaining the experimental observations. The comparison with phenol solution shows that the solvation interaction of phenolate beyond its first solvation shell is due to the high charge density of its negatively charged oxygen atom.

12.
Phys Chem Chem Phys ; 22(16): 8667-8671, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32270833

RESUMO

We study the relation between the macroscopic viscoelastic properties of aqueous hyaluronan polymer solutions and the molecular-scale dynamics of water using rheology measurements, differential dynamic microscopy, and polarization-resolved infrared pump-probe spectroscopy. We observe that the addition of hyaluronan to water leads to a slowing down of the reorientation of a fraction of the water molecules. Near pH 2.4, the viscosity of the hyaluronan solution reaches a maximum, while the number of slowed down water molecules reaches a minimum. This implies that the water molecules become on average more mobile when the solution becomes more viscous. This observation indicates that the increase in viscosity involves the expulsion of hydration water from the surfaces of the hyaluronan polymers, and a bundling of the hyaluronan polymer chains.


Assuntos
Biopolímeros/química , Géis/química , Ácido Hialurônico/química , Água/química , Concentração de Íons de Hidrogênio , Reologia , Espectrofotometria Infravermelho
13.
J Chem Phys ; 153(5): 054503, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770928

RESUMO

We present a new effective medium theory for the dielectric response of mixtures of molecules with molecular polarizability and a permanent dipole moment. This model includes the interaction of each local dipole moment with the dipolar reaction fields of neighboring dipolar molecules. This interaction leads to an enhancement of the dielectric response of the mixture and constitutes an alternative method to describe the correlated motion of dipoles in liquids compared to the models of Fröhlich and Kirkwood. The model requires as input parameters the volume fractions of the components contained in the mixture and the dielectric parameters of the pure components. The results of the model are compared with experimental data and with the results of previous effective-medium theories.

14.
Proc Natl Acad Sci U S A ; 114(2): 227-232, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27956637

RESUMO

On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature.

15.
J Phys Chem A ; 123(38): 8220-8225, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31478665

RESUMO

We use two-dimensional infrared spectroscopy to study the interactions between the amide and carboxylate anion groups of hyaluronan polymers at neutral pH. The spectra reveal the presence of intrachain hydrogen bonds between the amide and carboxylate anion groups in aqueous solution. We determine the relative orientation of the amide and carboxylate anion groups when forming this hydrogen bond and quantify the fraction of amide groups that participate in hydrogen bonding. We find that a variation of the pH and/or temperature has a negligible effect on this fraction, whereas the persistence length of the hyaluronan chains and the associated viscosity of hyaluronan solutions are known to change significantly. We conclude that the hydrogen bonding between the amide and carboxylate anion groups does not significantly contribute to the chain rigidity of hyaluronan polymers.

16.
Proc Natl Acad Sci U S A ; 113(14): 3740-5, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26936953

RESUMO

Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application.


Assuntos
Proteínas Anticongelantes/química , Materiais Biocompatíveis/farmacologia , Criopreservação/métodos , Crioprotetores/farmacologia , Animais , Cristalização , Congelamento , Gelo/efeitos adversos
17.
J Am Chem Soc ; 140(30): 9365-9368, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028137

RESUMO

Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) inhibit ice growth via an adsorption-inhibition mechanism that assumes irreversible binding of AF(G)Ps to embryonic ice crystals and the inhibition of further growth. The irreversible binding of antifreeze glycoproteins (AFGPs) to ice has been questioned and remains poorly understood. Here, we used microfluidics and fluorescence microscopy to investigate the nature of the binding of small and large AFGP isoforms. We found that both AFGP isoforms bind irreversibly to ice, as evidenced by microfluidic solution exchange experiments. We measured the adsorption rate of the large AFGP isoform and found it to be 50% faster than that of AFP type III. We also found that the AFGP adsorption rate decreased by 65% in the presence of borate, a well-known inhibitor of AFGP activity. Our results demonstrate that the adsorption rate of AFGPs to ice is crucial for their ice growth inhibition capability.


Assuntos
Proteínas Anticongelantes/metabolismo , Glicoproteínas/metabolismo , Gelo , Água/metabolismo , Adsorção , Animais , Proteínas Anticongelantes/química , Glicoproteínas/química , Perciformes , Ligação Proteica , Água/química
18.
Phys Rev Lett ; 120(21): 216001, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883173

RESUMO

We find that the reduction in dielectric response (depolarization) of water caused by solvated ions is different for H_{2}O and D_{2}O. This isotope dependence allows us to reliably determine the kinetic contribution to the depolarization, which is found to be significantly smaller than predicted by existing theory. The discrepancy can be explained from a reduced hydrogen-bond cooperativity in the solvation shell: we obtain quantitative agreement between theory and experiment by reducing the Kirkwood correlation factor of the solvating water from 2.7 (the bulk value) to ∼1.6 for NaCl and ∼1 (corresponding to completely uncorrelated motion of water molecules) for CsCl.

19.
Chem Rev ; 116(13): 7642-72, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27314430

RESUMO

Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.


Assuntos
Hidrogênio/química , Hidróxidos/química , Água/química , Ácidos/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Químicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Teoria Quântica , Tensão Superficial
20.
Chem Rev ; 116(13): 7626-41, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27153482

RESUMO

We present an overview of the studies of ion pairing in aqueous media of the past decade. In these studies, interactions between ions, and between ions and water, are investigated with relatively novel approaches, including dielectric relaxation spectroscopy, far-infrared (terahertz) absorption spectroscopy, femtosecond mid-infrared spectroscopy, and X-ray spectroscopy and scattering, as well as molecular dynamics simulation methods. With these methods, it is found that ion pairing is not a rare phenomenon only occurring for very particular, strongly interacting cations and anions. Instead, for many salt solutions and their interfaces, the measured and calculated structure and dynamics reveal the presence of a distinct concentration of contact ion pairs (CIPs), solvent shared ion pairs (SIPs), and solvent-separated ion pairs (2SIPs). We discuss the importance of specific ion-pairing interactions between cations like Li(+) and Na(+) and anionic carboxylate and phosphate groups for the structure and functioning of large (bio)molecular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA