Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Am Chem Soc ; 144(7): 3099-3105, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35081312

RESUMO

Stimuli-responsive coordination cages allow reversible control over guest binding and release, relevant for adaptive receptors, carriers, catalysts, and complex systems. Light serves as an advantageous stimulus, as it can be applied with precise spatial and temporal resolution without producing chemical waste products. We report the first Pd-mediated coordination cage based on ligands embedding a diazocine photoswitch. While the thermodynamically more stable cis-photoisomer sloppily assembles to a mixture of species with general formula [Pdncis-L2n], the less stable trans-isomer yields a defined [Pd2trans-L4] cage that reversibly converts back to the cis-system by irradiation at 530 nm or thermal relaxation. The [Pdncis-L2n] species do not bind a given guest; however, [Pd2trans-L4] is able to encapsulate a bis-sulfonate as long as it is kept assembled, requiring continuous irradiation at 385 nm. In the absence of UV light, thermal relaxation results in back-switching and guest release. Assembly and properties of the system were characterized by a combination of NMR, ion mobility ESI-MS, single-crystal X-ray diffraction, and UV-vis absorption studies.

2.
Chemphyschem ; 23(19): e202200215, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35896954

RESUMO

Selectivity and image contrast are always challenging in magnetic resonance imaging (MRI), which are - inter alia - addressed by contrast agents. These compounds still need to be improved, and their relaxation properties, i. e., their paramagnetic relaxation enhancement (PRE), needs to be understood. The main goal is to improve specificity and relaxivities, especially at the high magnetic fields currently exploited not only in material science but also in the medical environment. Longitudinal and transverse relaxivities, r1 and r2 , which correspond to the longitudinal and transverse relaxation rates R1 and R2, normalized to the concentration of the paramagnetic moieties, need to be considered because both contribute to the image contrast. 1 H-relaxivities r1 and r2 of high-spin heterometallic clusters were studied containing lanthanide and transition-metal ions within a polyoxometalate matrix. A wide range of magnetic fields from 0.5 T/20 MHz to 33 T/1.4 GHz was applied. The questions addressed here concern the rotational and diffusion correlation times which determine the relaxivities and are affected by the solvent's viscosity. Moreover, the variation of the lanthanide and transition-metal ions of the clusters provided insights into the sensitivity of PRE with respect to the electron spin properties of the paramagnetic centers as well as cooperative effects between lanthanides and transition metal ions.


Assuntos
Meios de Contraste , Elementos da Série dos Lantanídeos , Ânions , Meios de Contraste/química , Íons , Elementos da Série dos Lantanídeos/química , Imageamento por Ressonância Magnética , Polieletrólitos , Solventes
3.
Angew Chem Int Ed Engl ; 61(35): e202205725, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35616285

RESUMO

Multicomponent metallo-supramolecular assembly allows the rational combination of different building blocks. Discrete multifunctional hosts with an accessible cavity can be prepared in a non-statistical fashion. We employ our shape-complementary assembly (SCA) method to achieve for the first time integrative self-sorting of heteroleptic PdII cages showing guest-tunable circularly polarized luminescence (CPL). An enantiopure helicene-based ligand (M or P configuration) is coupled with a non-chiral emissive fluorenone-based ligand (A or B) to form a series of Pd2 L2 L'2 assemblies. The modular strategy allows to impart the chiral information of the helicenes to the overall supramolecular system, resulting in CPL from the non-chiral component. Guest binding results in a 4-fold increase of CPL intensity. The principle offers potential to generate libraries of multifunctional materials with applications in molecular recognition, enantioselective photo-redox catalysis and information processing.

4.
J Am Chem Soc ; 143(26): 9718-9723, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156243

RESUMO

Fullerene C60 and its derivatives are widely used in molecular electronics, photovoltaics, and battery materials, because of their exceptional suitability as electron acceptors. In this context, single-electron transfer on C60 generates the C60• - radical anion. However, the short lifetime of free C60• - hampers its investigation and application. In this work, we dramatically stabilize the usually short-lived C60• - species within a self-assembled M2L4 coordination cage consisting of a triptycene-based ligand and Pd(II) cations. The electron-deficient cage strongly binds C60 by providing a curved inner π-surface complementary to the fullerene's globular shape. Cyclic voltammetry revealed a positive potential shift for the first reduction of encapsulated C60, which is indicative of a strong interaction between confined C60• - and the cationic cage. Photochemical one-electron reduction with 1-benzyl-1,4-dihydronicotinamide allows selective and quantitative conversion of the confined C60 molecule in millimolar acetonitrile solution at room temperature. Radical generation was confirmed by nuclear magnetic resonance, electron paramagnetic resonance, ultraviolet-visible-near-infrared spectroscopy and electrospray ionization mass spectrometry. The lifetime of C60• - within the cage was determined to be so large that it could still be detected after one month under an inert atmosphere.

5.
J Am Chem Soc ; 143(18): 6969-6980, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913724

RESUMO

The kinetics of intercluster metal atom exchange reactions between solvated [Ag25(DMBT)18]- and [Au25(PET)18]- (DMBT and PET are 2,4-dimethylbenzenethiol and 2-phenylethanethiol, respectively, both C8H10S) were probed by electrospray ionization mass spectrometry and computer-based modeling. Anion mass spectra and collision induced dissociation (CID) measurements show that both cluster monomers and dimers are involved in the reactions. We have modeled the corresponding kinetics assuming a reaction mechanism in which metal atom exchange occurs through transient dimers. Our kinetic model contains three types of generic reactions: dimerization of monomers, metal atom exchange in the transient dimers, and dissociation of the dimers to monomers. There are correspondingly 377 discrete species connected by in total 1302 reactions (i.e., dimerization, dissociation and atom exchange reactions) leading to the entire series of monomeric and dimeric products [AgmAu25-m]- (m = 1-24) and [AgmAu50-m]2- (m = 0-50), respectively. The rate constants of the corresponding reactions were fitted to the experimental data, and good agreement was obtained with exchange rate constants which scale with the probability of finding a silver or gold atom in the respective monomeric subunit of the dimer, i.e., reflecting an entropic driving force for alloying. Allowing the dimerization rate constant to scale with increasing gold composition of the respective reactants improves the agreement further. The rate constants obtained are physically plausible, thus strongly supporting dimer-mediated metal atom exchange in this intercluster reaction system.

6.
J Am Chem Soc ; 143(25): 9405-9414, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138547

RESUMO

A ligand exchange strategy has been employed to understand the role of ligands on the structural and optical properties of atomically precise 29 atom silver nanoclusters (NCs). By ligand optimization, ∼44-fold quantum yield (QY) enhancement of Ag29(BDT)12-x(DHLA)x NCs (x = 1-6) was achieved, where BDT and DHLA refer to 1,3-benzene-dithiol and dihydrolipoic acid, respectively. High-resolution mass spectrometry was used to monitor ligand exchange, and structures of the different NCs were obtained through density functional theory (DFT). The DFT results from Ag29(BDT)11(DHLA) NCs were further experimentally verified through collisional cross-section (CCS) analysis using ion mobility mass spectrometry (IM MS). An excellent match in predicted CCS values and optical properties with the respective experimental data led to a likely structure of Ag29(DHLA)12 NCs consisting of an icosahedral core with an Ag16S24 shell. Combining the experimental observation with DFT structural analysis of a series of atomically precise NCs, Ag29-yAuy(BDT)12-x(DHLA)x (where y, x = 0,0; 0,1; 0,12 and 1,12; respectively), it was found that while the metal core is responsible for the origin of photoluminescence (PL), ligands play vital roles in determining their resultant PLQY.

7.
Chemistry ; 27(61): 15171-15179, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34165834

RESUMO

Chiral magnetic materials are proposed for applications in second-order non-linear optics, magneto-chiral dichroism, among others. Recently, we have reported a set of tetra-nuclear Fe(II) grid complex conformers with general formula C/S-[Fe4 L4 ]8+ (L: 2,6-bis(6-(pyrazol-1-yl)pyridin-2-yl)-1,5-dihydrobenzo[1,2-d : 4,5-d']diimidazole). In the grid complexes, isomerism emerges from tautomerism and conformational isomerism of the ligand L, and the S-type grid complex is chiral, which originates from different non-centrosymmetric spatial organization of the trans type ligand around the Fe(II) center. However, the selective preparation of an enantiomerically pure grid complex in a controlled manner is difficult due to spontaneous self-assembly. To achieve the pre-synthesis programmable resolution of Fe(II) grid complexes, we designed and synthesized two novel intrinsically chiral ligands by appending chiral moieties to the parent ligand. The complexation of these chiral ligands with Fe(II) salt resulted in the formation of enantiomerically pure Fe(II) grid complexes, as unambiguously elucidated by CD and XRD studies. The enantiomeric complexes exhibited similar gradual and half-complete thermal and photo-induced SCO characteristics. The good agreement between the experimentally obtained and calculated CD spectra further supports the enantiomeric purity of the complexes and even the magnetic studies. The chiral resolution of Fe(II)- [2×2] grid complexes reported in this study, for the first time, might enable the fabrication of magneto-chiral molecular devices.

8.
Angew Chem Int Ed Engl ; 60(11): 5673-5678, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245206

RESUMO

A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd2 L4 ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd2 L4 ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd3 L6 ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.

9.
Molecules ; 25(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942657

RESUMO

Reaction of the trilacunary Wells-Dawson anion {α-P2W15O56}12- with ErIII ion in a 1 M LiOAc/HOAc buffer (pH 4.8) solution produces a dinuclear erbium(III) substituted sandwich-type structure [{Er(H2O)(CH3COO)(P2W17O61)}2]16- (1). The isolated compound was structurally characterized using single crystal and powder X-ray diffraction, FTIR spectroscopy, mass spectrometry and thermogravimetric analysis. The electrochemical, electrocatalytic, photoluminescence and magnetic properties of 1 were investigated.


Assuntos
Érbio/química , Magnetismo , Compostos de Tungstênio/química , Catálise , Cristalografia por Raios X , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Conformação Molecular , Compostos de Tungstênio/síntese química
10.
Langmuir ; 35(35): 11243-11254, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30521344

RESUMO

We discuss the role of the metal-ligand (M-L) interfaces in the chemistry of ligand-protected, atomically precise noble metal clusters, a new and expanding family of nanosystems, in solution as well as in the gas phase. A few possible mechanisms by which the structure and dynamics of M-L interfaces could trigger intercluster exchange reactions are presented first. How interparticle chemistry can be a potential mechanism of Ostwald ripening, a well-known particle coarsening process, is also discussed. The reaction of Ag59(2,5-DCBT)32 (DCBT = dichlorobenzenethiol) with 2,4-DCBT leading to the formation of Ag44(2,4-DCBT)30 is presented, demonstrating the influence of the ligand structure in ligand-induced chemical transformations of clusters. We also discuss the structural isomerism of clusters such as Ag44(SR)30 (-SR = alkyl/aryl thiolate) in the gas phase wherein the occurrence of isomerism is attributed to the structural rearrangements in the M-L bonding network. Interfacial bonding between Au25(SR)18 clusters leading to the formation of cluster dimers and trimers is also discussed. Finally, we show that the desorption of phosphine and hydride ligands on a silver cluster, [Ag18(TPP)10H16]2+ (TPP = triphenylphosphine) in the gas phase, leads to the formation of a naked silver cluster of precise nuclearity, such as Ag17+. We demonstrate that the nature of the M-L interfaces, i.e., the oxidation state of metal atoms, structure of the ligand, M-L bonding network, and so forth, plays a key role in the chemical reactivity of clusters. The structure, dynamics, and chemical reactivity of nanosystems in general are to be explored together to obtain new insights into their emerging science.

11.
Anal Chem ; 90(19): 11351-11357, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30170489

RESUMO

A detailed mass-spectrometric study of atomically precise monolayer-protected clusters revealed the potential application of such materials as mass-spectrometric standards, mostly in negative-ion mode and in the high-mass range. To date, very few molecules are known that can be efficiently ionized and detected at lower concentrations as negative ions with high signal intensities beyond m/ z 3000. Noble-metal clusters are molecules with definite masses, sizes, and shapes, which makes them excellent candidates to choose as standards over conventional low-molecular-weight polymers or clusters of ionic salts. They may be used as calibrants in all possible modes, including tandem mass spectrometry and ion mobility. With the advancement in materials science, more and more molecules are being added to the list that are inherently negatively charged in solution and can be examined by mass spectrometry. In this report, we demonstrate the use of three such model cluster systems for their potential to calibrate mass spectrometers in negative-ion mode. This idea can be extended to many other clusters known so far to achieve calibration in extended mass ranges.

12.
Anal Chem ; 90(15): 8776-8784, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29996050

RESUMO

A detailed examination of collision cross sections (CCSs) coupled with computational methods has revealed new insights into some of the key questions centered around curcumin, one of the most intensively studied natural therapeutic agents. In this study, we have distinguished the structures and conformers of the well-known enol and the far more elusive keto form of curcumin by using ion mobility mass spectrometry (IM MS). The values of the theoretically predicted isomers were compared with the experimental CCS values to confirm their structures. We have identified a bent structure for the keto form and the degree of bending was estimated. Using IM MS, we have also shown that ESI MS reflects the solution phase structures and their relative populations, in this case. Piperine, a naturally occurring heterocyclic compound, is known to increase the bioavailability of curcumin. However, it is still not clearly understood which tautomeric form of curcumin is better stabilized by it. We have identified preferential stabilization of the enol form in the presence of piperine using IM MS. Cyclodextrins (CDs) are used as well-known carriers in the pharmaceutical industry for increasing the stability, solubility, bioavailability, and tolerability of curcumin. However, the crystal structures of supramolecular complexes of curcumin∩CD are unknown. We have determined the structures of different isomers of curcumin∩CD (α- and ß-CD) complexes by comparing the CCSs of theoretically predicted structures with the experimentally obtained CCSs, which will further help in understanding the specific role of the structures involved in different biological activities.

13.
Acc Chem Res ; 50(8): 1988-1996, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28726382

RESUMO

Nanoparticles exhibit a rich variety in terms of structure, composition, and properties. However, reactions between them remain largely unexplored. In this Account, we discuss an emerging aspect of nanomaterials chemistry, namely, interparticle reactions in solution phase, similar to reactions between molecules, involving atomically precise noble metal clusters. A brief historical account of the developments, starting from the bare, gas phase clusters, which led to the synthesis of atomically precise monolayer protected clusters in solution, is presented first. Then a reaction between two thiolate-protected, atomically precise noble metal clusters, [Au25(PET)18]- and [Ag44(FTP)30]4- (PET = 2-phenylethanethiol, FTP = 4-fluorothiophenol), is presented wherein these clusters spontaneously exchange metal atoms, ligands, and metal-ligand fragments between them under ambient conditions. The number of exchanged species could be controlled by varying the initial compositions of the reactant clusters. Next, a reaction of [Au25(PET)18]- with its structural analogue [Ag25(DMBT)18]- (DMBT = 2,4-dimethylbenzenethiol) is presented, which shows that atom-exchange reactions happen with structures conserved. We detected a transient dianionic adduct, [Ag25Au25(DMBT)18(PET)18]2-, formed between the two clusters indicating that this adduct could be a possible intermediate of the reaction. A reaction involving a dithiolate-protected cluster, [Ag29(BDT)12]3- (BDT = 1,3-benzenedithiol), is also presented wherein metal atom exchange alone occurs, but with no ligand and fragment exchanges. These examples demonstrate that the nature of the metal-thiolate interface, that is, its bonding network and dynamics, play crucial roles in dictating the type of exchange processes and overall rates. We also discuss a recently proposed structural model of these clusters, namely, the Borromean ring model, to understand the dynamics of the metal-ligand interfaces and to address the site specificity and selectivity in these reactions. In the subsequent sections, reactions involving atomically precise noble metal clusters and one- and two-dimensional nanosystems are presented. We show that highly protected, stable clusters such as [Au25(PET)18]- undergo chemical transformation on graphenic surfaces to form a bigger cluster, Au135(PET)57. Finally, we present the transformation of tellurium nanowires (Te NWs) to Ag-Te-Ag dumbbell nanostructures through a reaction with an atomically precise silver cluster, Ag32(SG)19 (SG = glutathione thiolate). The starting materials and the products were characterized using high resolution electrospray ionization mass spectrometry, matrix assisted laser desorption ionization mass spectrometry, UV/vis absorption, luminescence spectroscopies, etc. We have analyzed principally mass spectrometric data to understand these reactions. In summary, we present the emergence of a new branch of chemistry involving the reactions of atomically precise cluster systems, which are prototypical nanoparticles. We demonstrate that such interparticle chemistry is not limited to metal clusters; it occurs across zero-, one-, and two-dimensional nanosystems leading to specific transformations. We conclude this Account with a discussion of the limitations in understanding of these reactions and future directions in this area of nanomaterials chemistry.

14.
Phys Chem Chem Phys ; 20(11): 7593-7603, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29493667

RESUMO

Proton transfer reactions have been a topic of fundamental interest in several areas of chemistry and biology. However, such reactivity has not been explored in detail for nanoscale materials. In this article, we present a unique reaction of an atomically precise monolayer-protected silver nanocluster, [Ag29(BDT)12]3-, with a proton (H+). Under controlled conditions, the strong proton affinity facilitated a complete conversion of the cluster to its protonated form, [Ag29(BDT)12H]2-. Moreover, binding of alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) induced specific structural changes and also favored dimerization of the cluster. In this case, the cations acted as a bridge between the two clusters and the degree of dimerization was specific to the size of the cations. The conformational changes and separation of the alkali-metal ion bound dimers from their respective monomers have been investigated by ion mobility mass spectrometry (IM MS) and tandem mass spectrometric studies. Density functional theory (DFT) calculations have been used to determine the possible structures of the monomers and the dimers. Similar reactivity of the cluster can also be extended to other metal ions. While the present study helps to expand the ion-chemistry of atomically precise clusters, gas-phase basicity of the molecule can be explored in further detail and this can find applications in the areas of sensing and materials in general.

15.
J Am Chem Soc ; 138(1): 140-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26677722

RESUMO

We present the first example of intercluster reactions between atomically precise, monolayer protected noble metal clusters using Au25(SR)18 and Ag44(SR)30 (RS- = alkyl/aryl thiolate) as model compounds. These clusters undergo spontaneous reaction in solution at ambient conditions. Mass spectrometric measurements both by electrospray ionization and matrix assisted laser desorption ionization show that the reaction occurs through the exchange of metal atoms and protecting ligands of the clusters. Intercluster alloying is demonstrated to be a much more facile method for heteroatom doping into Au25(SR)18, as observed by doping up to 20 Ag atoms. We investigated the thermodynamic feasibility of the reaction using DFT calculations and a tentative mechanism has been presented. Metal core-thiolate interfaces in these clusters play a crucial role in inducing these reactions and also affect rates of these reactions. We hope that our work will help accelerate activities in this area to establish chemistry of monolayer protected clusters.

16.
Angew Chem Int Ed Engl ; 55(27): 7777-81, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27119514

RESUMO

Unprecedented silver ion leaching, in the range of 0.7 ppm was seen when metallic silver was heated in water at 70 °C in presence of simple carbohydrates, such as glucose, making it a green method of silver extraction. Extraction was facilitated by the presence of anions, such as carbonate and phosphate. Studies confirm a two-step mechanism of silver release, first forming silver ions at the metal surface and later complexation of ionic silver with glucose; such complexes have been detected by mass spectrometry. Extraction leads to microscopic roughening of the surface making it Raman active with an enhancement factor of 5×10(8) .

17.
Nat Chem ; 16(4): 584-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243023

RESUMO

Self-assembled hosts, inspired by biological receptors and catalysts, show application potential in sustainable synthesis, energy conversion and medicine. Implementing multiple functionalities in the form of distinguishable building blocks, however, is difficult without risking narcissistic self-sorting or a statistical mess. Here we report a systematic series of integratively self-assembled heteroleptic cages in which two square-planar PdII cations are bridged by four different bis-pyridyl ligands, A, B, C and D, via synergistic effects to exclusively form a single isomer-the lantern-shaped cage [Pd2ABCD]. This self-sorting goal-forming just one out of 55 possible structures-is reached under full thermodynamic control and can be realized progressively (by combining progenitors, such as [Pd2A2C2] with [Pd2B2D2]), directly from ligands and PdII cations or by mixing all four corresponding homoleptic cages. The rational design of complex multicomponent assemblies that enables the modular incorporation of diverse chemical moieties will advance their applicability in functional nanosystems.

18.
Chemphyschem ; 14(6): 1272-82, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23508895

RESUMO

A discrete sequence of bare gold clusters of well-defined nuclearity, namely Au25(+), Au38(+) and Au102(+), formed in a process that starts from gold-bound adducts of the protein lysozyme, were detected in the gas phase. It is proposed that subsequent to laser desorption ionization, gold clusters form in the gas phase, with the protein serving as a confining growth environment that provides an effective reservoir for dissipation of the cluster aggregation and stabilization energy. First-principles calculations reveal that the growing gold clusters can be electronically stabilized in the protein environment, achieving electronic closed-shell structures as a result of bonding interactions with the protein. Calculations for a cluster with 38 gold atoms reveal that gold interaction with the protein results in breaking of the disulfide bonds of the cystine units, and that the binding of the cysteine residues to the cluster depletes the number of delocalized electrons in the cluster, resulting in opening of a super-atom electronic gap. This shell-closure stabilization mechanism confers enhanced stability to the gold clusters. Once formed as stable magic number aggregates in the protein growth medium, the gold clusters become detached from the protein template and are observed as bare Au(n)(+) (n=25, 38, and 102) clusters.


Assuntos
Ouro/química , Muramidase/química , Elétrons , Gases/química , Ouro/metabolismo , Modelos Químicos , Muramidase/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Kidney360 ; 4(1): 69-77, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36700906

RESUMO

BACKGROUND: ANCA-negative pauci-immune glomerulonephritis (PIGN) represents a rare and often under-studied subgroup of the vasculitides. This study aims to investigate differences in the clinical phenotype, renal histological features, and clinical outcomes of patients with PIGN, with and without serum ANCA positivity. METHODS: A cohort of biopsy-proven PIGN with and without detectable circulating ANCA was constructed from a single center between 2006 and 2016. Primary outcomes compared clinical presentation and histopathological features according to ANCA status, with multivariate Cox regression to compare mortality and ESKD. A systematic review and meta-analysis of the published literature was undertaken. RESULTS: In our cohort of 146 patients, 22% (n=32) had ANCA-negative disease, with a comparatively younger mean age at diagnosis; 51.4 versus 65.6 years (P<0.001). In total, 14 studies, inclusive of our cohort, were eligible for meta-analysis, totaling 301 patients who were ANCA negative. Those with ANCA-negative disease tended to have fewer extrarenal symptoms and a higher frequency of renal-limited disease, but both failed to reach statistical significance (P=0.92 and P=0.07). The risk of ESKD was significantly higher in seronegative disease (RR, 2.28; 95% confidence interval, 1.42 to 3.65; P<0.001), reflecting our experience, with a fivefold increased risk of ESKD in ANCA-negative disease (P<0.001). No significant difference in the chronicity of histopathological findings was seen and the meta-analysis showed no difference in morality (RR, 1.22; 95% confidence interval, 0.63 to 2.38; P=0.55). CONCLUSION: Our findings demonstrate that ANCA-negative PIGN presents in younger patients, with fewer extrarenal manifestations and higher ESKD risk, despite a lack of difference in histopathology. This study provides the impetus for further research into the pathogenesis, treatment response, and duration of immunotherapy in ANCA-negative disease. We suggest that the absence of positive ANCA serology should not discourage treatment and for clinical trials to include patients who are ANCA negative.


Assuntos
Glomerulonefrite , Vasculite , Humanos , Anticorpos Anticitoplasma de Neutrófilos , Estudos de Coortes , Rim/patologia , Glomerulonefrite/epidemiologia , Glomerulonefrite/terapia , Glomerulonefrite/diagnóstico , Vasculite/patologia
20.
Chem Sci ; 13(40): 11912-11917, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320919

RESUMO

Cuboctahedral coordination cages of the general formula [Pd12L24]24+ (L = low-symmetry ligand) were analyzed theoretically and experimentally. With 350 696 potential isomers, the structural space of these assemblies is vast. Orientational self-sorting refers to the preferential formation of particular isomers within the pool of potential structures. Geometric and computational analyses predict the preferred formation of cages with a cis arrangement at the metal centers. This prediction was corroborated experimentally by synthesizing a [Pd12L24]24+ cage with a bridging 3-(4-(pyridin-4-yl)phenyl)pyridine ligand. A crystallographic analysis of this assembly showed exclusive cis coordination of the 3- and the 4-pyridyl donor groups at the Pd2+ ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA