Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Annu Rev Cell Dev Biol ; 33: 77-101, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28783960

RESUMO

A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.


Assuntos
Polaridade Celular , Saccharomyces cerevisiae/citologia , Actinas/metabolismo , Ciclo Celular , Modelos Biológicos
2.
Proc Natl Acad Sci U S A ; 119(43): e2211431119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36264833

RESUMO

Actomyosin contractile force produced by myosin II molecules that bind and pull actin filaments is harnessed for diverse functions, from cell division by the cytokinetic contractile ring to morphogenesis driven by supracellular actomyosin networks during development. However, actomyosin contractility is intrinsically unstable to self-reinforcing spatial variations that may destroy the actomyosin architecture if unopposed. How cells control this threat is not established, and while large myosin fluctuations and punctateness are widely reported, the full course of the instability in cells has not been observed. Here, we observed the instability run its full course in isolated cytokinetic contractile rings in cell ghosts where component turnover processes are absent. Unprotected by turnover, myosin II merged hierarchically into aggregates with increasing amounts of myosin and increasing separation, up to a maximum separation. Molecularly explicit simulations reproduced the hierarchical aggregation which precipitated tension loss and ring fracture and identified the maximum separation as the length of actin filaments mediating mechanical communication between aggregates. In the final simulated dead-end state, aggregates were morphologically quiescent, including asters with polarity-sorted actin, similar to the dead-end state observed in actomyosin systems in vitro. Our results suggest the myosin II turnover time controls actomyosin contractile instability in normal cells, long enough for aggregation to build robust aggregates but sufficiently short to intercept catastrophic hierarchical aggregation and fracture.


Assuntos
Actinas , Actomiosina , Actomiosina/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Miosina Tipo II/metabolismo , Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo
3.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148799

RESUMO

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Anticorpos de Domínio Único , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Citocinese , Corantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticorpos de Domínio Único/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
4.
Org Biomol Chem ; 22(3): 590-605, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131271

RESUMO

Biphenyl-fused-dioxacyclodecynes are a promising class of strained alkyne for use in Cu-free 'click' reactions. In this paper, a series of functionalised derivatives of this class of reagent, containing fluorescent groups, are described. Studies aimed at understanding and increasing the reactivity of the alkynes are also presented, together with an investigation of the bioconjugation of the reagents with an azide-labelled protein.

5.
J Biol Chem ; 298(11): 102518, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152749

RESUMO

The great diversity in actin network architectures and dynamics is exploited by cells to drive fundamental biological processes, including cell migration, endocytosis, and cell division. While it is known that this versatility is the result of the many actin-remodeling activities of actin-binding proteins, such as Arp2/3 and cofilin, recent work also implicates posttranslational acetylation or arginylation of the actin N terminus itself as an equally important regulatory mechanism. However, the molecular mechanisms by which acetylation and arginylation alter the properties of actin are not well understood. Here, we directly compare how processing and modification of the N terminus of actin affects its intrinsic polymerization dynamics and its remodeling by actin-binding proteins that are essential for cell migration. We find that in comparison to acetylated actin, arginylated actin reduces intrinsic as well as formin-mediated elongation and Arp2/3-mediated nucleation. By contrast, there are no significant differences in cofilin-mediated severing. Taken together, these results suggest that cells can employ these differently modified actins to regulate actin dynamics. In addition, unprocessed actin with an N-terminal methionine residue shows very different effects on formin-mediated elongation, Arp2/3-mediated nucleation, and severing by cofilin. Altogether, this study shows that the nature of the N terminus of actin can promote distinct actin network dynamics, which can be differentially used by cells to locally finetune actin dynamics at distinct cellular locations, such as at the leading edge.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Actinas/metabolismo , Forminas , Acetilação , Fatores de Despolimerização de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
6.
J Cell Sci ; 133(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31964701

RESUMO

Actin is one of the most abundant eukaryotic cytoskeletal polymer-forming proteins, which, in the filamentous form, regulates a number of physiological processes, ranging from cell division and migration to development and tissue function. Actins have different post-translational modifications (PTMs) in different organisms, including methionine, alanine, aspartate and glutamate N-acetylation, N-arginylation and the methylation of the histidine at residue 73 (His-73), with different organisms displaying a distinct signature of PTMs. Currently, methods are not available to produce actin isoforms with an organism-specific PTM profile. Here, we report the Pick-ya actin method, a method to express actin isoforms from any eukaryote with its own key characteristic PTM pattern. We achieve this using a synthetic biology strategy in a yeast strain that expresses, one, actin isoforms with the desired N-end via ubiquitin fusion and, two, mammalian enzymes that promote acetylation and methylation. Pick-ya actin should greatly facilitate biochemical, structural and physiological studies of the actin cytoskeleton and its PTMs.


Assuntos
Actinas/metabolismo , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Humanos
7.
J Cell Sci ; 131(1)2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29162650

RESUMO

Cytokinesis in many eukaryotes requires a contractile actomyosin ring that is placed at the division site. In fission yeast, which is an attractive organism for the study of cytokinesis, actomyosin ring assembly and contraction requires the myosin II heavy chain Myo2p. Although myo2-E1, a temperature-sensitive mutant defective in the upper 50 kDa domain of Myo2p, has been studied extensively, the molecular basis of the cytokinesis defect is not understood. Here, we isolate myo2-E1-Sup2, an intragenic suppressor that contains the original mutation in myo2-E1 (G345R) and a second mutation in the upper 50 kDa domain (Y297C). Unlike myo2-E1-Sup1, a previously characterized myo2-E1 suppressor, myo2-E1-Sup2 reverses actomyosin ring contraction defects in vitro and in vivo Structural analysis of available myosin motor domain conformations suggests that a steric clash in myo2-E1, which is caused by the replacement of a glycine with a bulky arginine, is relieved in myo2-E1-Sup2 by mutation of a tyrosine to a smaller cysteine. Our work provides insight into the function of the upper 50 kDa domain of Myo2p, informs a molecular basis for the cytokinesis defect in myo2-E1, and may be relevant to the understanding of certain cardiomyopathies.


Assuntos
Actomiosina/metabolismo , Citocinese/genética , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo II/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Sequência de Aminoácidos , Divisão Celular , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
J Cell Sci ; 131(8)2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29535210

RESUMO

Actins are major eukaryotic cytoskeletal proteins, and they are involved in many important cell functions, including cell division, cell polarity, wound healing and muscle contraction. Despite obvious drawbacks, muscle actin, which is easily purified, is used extensively for biochemical studies of the non-muscle actin cytoskeleton. Here, we report a rapid and cost-effective method to purify heterologous actins expressed in the yeast Pichia pastoris Actin is expressed as a fusion with the actin-binding protein thymosin ß4 and purified by means of an affinity tag introduced in the fusion. Following cleavage of thymosin ß4 and the affinity tag, highly purified functional full-length actin is liberated. We purify actins from Saccharomycescerevisiae and Schizosaccharomycespombe, and the ß- and γ-isoforms of human actin. We also report a modification of the method that facilitates expression and purification of arginylated actin, a form of actin thought to regulate dendritic actin networks in mammalian cells. The methods we describe can be performed in all laboratories equipped for molecular biology, and should greatly facilitate biochemical and cell biological studies of the actin cytoskeleton.


Assuntos
Actinas/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Humanos , Pichia
9.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206188

RESUMO

In fission yeast, the lengths of interphase microtubule (iMT) arrays are adapted to cell length to maintain cell polarity and to help centre the nucleus and cell division ring. Here, we show that length regulation of iMTs is dictated by spatially regulated competition between MT-stabilising Tea2/Tip1/Mal3 (Kinesin-7) and MT-destabilising Klp5/Klp6/Mcp1 (Kinesin-8) complexes at iMT plus ends. During MT growth, the Tea2/Tip1/Mal3 complex remains bound to the plus ends of iMT bundles, thereby restricting access to the plus ends by Klp5/Klp6/Mcp1, which accumulate behind it. At cell ends, Klp5/Klp6/Mcp1 invades the space occupied by the Tea2/Tip1/Tea1 kinesin complex triggering its displacement from iMT plus ends and MT catastrophe. These data show that in vivo, whilst an iMT length-dependent model for catastrophe factor accumulation has validity, length control of iMTs is an emergent property reflecting spatially regulated competition between distinct kinesin complexes at the MT plus tip.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Polaridade Celular , Interfase/fisiologia , Cinesinas/genética , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
10.
Proc Natl Acad Sci U S A ; 113(9): E1200-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26873105

RESUMO

Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule.


Assuntos
Actinas/metabolismo , Bacillus thuringiensis/metabolismo , DNA Bacteriano/metabolismo , Nanotubos , Plasmídeos , Bacillus thuringiensis/genética , Proteínas de Fluorescência Verde/genética
11.
Int J Mol Sci ; 20(10)2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31130675

RESUMO

Site-specific incorporation of un-natural amino acids (UNAA) is a powerful approach to engineer and understand protein function. Site-specific incorporation of UNAAs is achieved through repurposing the amber codon (UAG) as a sense codon for the UNAA, using a tRNACUA that base pairs with an UAG codon in the mRNA and an orthogonal amino-acyl tRNA synthetase (aaRS) that charges the tRNACUA with the UNAA. Here, we report an expansion of the zebrafish genetic code to incorporate the UNAAs, azido-lysine (AzK), bicyclononyne-lysine (BCNK), and diazirine-lysine (AbK) into green fluorescent protein (GFP) and glutathione-s-transferase (GST). We also present proteomic evidence for UNAA incorporation into GFP. Our work sets the stage for the use of AzK, BCNK, and AbK introduction into proteins as a means to investigate and engineer their function in zebrafish.


Assuntos
Lisina/análogos & derivados , Engenharia de Proteínas/métodos , Peixe-Zebra/genética , Animais , Códon de Terminação/genética , Código Genético , Glutationa Transferase/genética , Proteínas de Fluorescência Verde/genética , Lisina/genética , Proteínas de Peixe-Zebra/genética
12.
Genes Dev ; 23(6): 660-74, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19299557

RESUMO

Cytokinesis is the terminal step of the cell cycle during which a mother cell divides into daughter cells. Often, the machinery of cytokinesis is positioned in such a way that daughter cells are born roughly equal in size. However, in many specialized cell types or under certain environmental conditions, the cell division machinery is placed at nonmedial positions to produce daughter cells of different sizes and in many cases of different fates. Here we review the different mechanisms that position the division machinery in prokaryotic and eukaryotic cell types. We also describe cytokinesis-positioning mechanisms that are not adequately explained by studies in model organisms and model cell types.


Assuntos
Evolução Biológica , Forma Celular/fisiologia , Citocinese/fisiologia , Microtúbulos/fisiologia , Fuso Acromático/fisiologia , Animais , Divisão Celular/fisiologia , Humanos
13.
J Cell Sci ; 125(Pt 6): 1429-39, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22526418

RESUMO

Sporulation is a unique form of cytokinesis that occurs following meiosis II in many yeasts, during which four daughter cells (spores) are generated within a single mother cell. Here we characterize the role of F-actin in the process of sporulation in the fission yeast Schizosaccharomyces pombe. As shown previously, we find that F-actin assembles into four ring structures per ascus, referred to as the meiotic actin ring (MeiAR). The actin nucleators Arp2/3 and formin For3 assemble into ring structures that overlap with Meu14, a protein known to assemble into the so-called leading edge, a ring structure that is known to guide forespore membrane assembly. Interestingly, F-actin makes rings that occupy a larger region behind the leading edge ring. Time-lapse microscopy showed that the MeiAR assembles near the spindle pole bodies and undergoes an expansion in diameter during the early stages of meiosis II, followed by closure in later stages of meiosis II. MeiAR closure completes the process of forespore membrane assembly. Loss of the MeiAR leads to excessive assembly of forespore membranes with a deformed appearance. The rate of closure of the MeiAR is dictated by the function of the septation initiation network (SIN). We conclude that the MeiAR ensures proper targeting of the membrane biogenesis machinery to the leading edge, thereby ensuring the formation of spherical spores.


Assuntos
Citoesqueleto de Actina/fisiologia , Estruturas Citoplasmáticas/fisiologia , Meiose/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Esporos Fúngicos/fisiologia , Actinas/fisiologia
15.
J Biol Chem ; 287(25): 21121-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22514279

RESUMO

Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Clostridium tetani/metabolismo , Modelos Moleculares , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridium tetani/química , Clostridium tetani/genética , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Estrutura Secundária de Proteína
16.
Nat Commun ; 14(1): 7989, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042893

RESUMO

The implications of the existence of different actins expressed in epithelial cells for network mechanics and dynamics is investigated by microrheology and confocal imaging. γ-actin predominately found in the apical cortex forms stiffer networks compared to ß-actin, which is preferentially organized in stress fibers. We attribute this to selective interactions with Mg2+-ions interconnecting the filaments' N-termini. Bundling propensity of the isoforms is different in the presence of Mg2+-ions, while crosslinkers such as α-actinin, fascin, and heavy meromyosin alter the mechanical response independent of the isoform. In the presence of myosin, ß-actin networks show a large number of small contraction foci, while γ-actin displays larger but fewer foci indicative of a stronger interaction with myosin motors. We infer that subtle changes in the amino acid sequence of actin isoforms lead to alterations of the mechanical properties on the network level with potential implications for specific biological functions.


Assuntos
Actinina , Actinas , Actinas/metabolismo , Actinina/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas , Íons , Citoesqueleto de Actina/metabolismo
17.
Elife ; 122023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790143

RESUMO

Actin isoforms organize into distinct networks that are essential for the normal function of eukaryotic cells. Despite a high level of sequence and structure conservation, subtle differences in their design principles determine the interaction with myosin motors and actin-binding proteins. Therefore, identifying how the structure of actin isoforms relates to function is important for our understanding of normal cytoskeletal physiology. Here, we report the high-resolution structures of filamentous skeletal muscle α-actin (3.37 Å), cardiac muscle α-actin (3.07 Å), ß-actin (2.99 Å), and γ-actin (3.38 Å) in the Mg2+·ADP state with their native post-translational modifications. The structures revealed isoform-specific conformations of the N-terminus that shift closer to the filament surface upon myosin binding, thereby establishing isoform-specific interfaces. Collectively, the structures of single-isotype, post-translationally modified bare skeletal muscle α-actin, cardiac muscle α-actin, ß-actin, and γ-actin reveal general principles, similarities, and differences between isoforms. They complement the repertoire of known actin structures and allow for a comprehensive understanding of in vitro and in vivo functions of actin isoforms.


The protein actin is important for many fundamental processes in biology, from contracting muscle to dividing a cell in two. As actin is involved in such a variety of roles, human cells have slightly different versions of the protein, known as isoforms. For example, alpha-actin is vital for contracting muscle, while beta- and gamma-actin drive cellular processes in non-muscle cells. In order to carry out its various functions, actin interacts with many other proteins inside the cell, such as myosin motors which power muscle contraction. These interactions rely on the precise chain of building blocks, known as amino acids, that make up the actin isoforms; even subtle alterations in this sequence can influence the behavior of the protein. However, it is not clear how differences in the amino acid sequence of the actin isoforms impact actin's interactions with other proteins. Arora et al. addressed this by studying the structure of four human actin isoforms using a technique called cryo-electron microscopy, where the proteins are flash-frozen and bombarded with electrons. These experiments showed where differences between the amino acid chains of each isoform were located in the protein. Arora et al. then compared their structures with previous work showing the structure of actin bound to myosin. This revealed that the tail-end of the protein (known as the N-terminus) differed in shape between the four isoforms, and this variation may influence how actin binds to others proteins in the cell. These results are an important foundation for further work on actin and how it interacts with other proteins. The structures could help researchers design new tools that can be used to target specific isoforms of actin in different types of laboratory experiments.


Assuntos
Actinas , Miosinas , Actinas/metabolismo , Isoformas de Proteínas/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Citoesqueleto de Actina/metabolismo
18.
Nat Biotechnol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081970

RESUMO

StayGold is an exceptionally bright and stable fluorescent protein that is highly resistant to photobleaching. Despite favorable fluorescence properties, use of StayGold as a fluorescent tag is limited because it forms a natural dimer. Here we report the 1.6 Å structure of StayGold and generate a derivative, mStayGold, that retains the brightness and photostability of the original protein while being fully monomeric.

19.
Dev Cell ; 12(6): 987-96, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17543869

RESUMO

Correct positioning of the cell-division plane is crucial for cell function in all organisms. The fission yeast Schizosaccharomyces pombe divides by utilizing an actomyosin-based contractile ring and is an attractive model for the study of cytokinesis. The metazoan anillin-related protein Mid1p stimulates medial assembly of the division septum by recruiting actomyosin-ring components to the medial cortex. Here, we describe an inhibitory mechanism, involving the cell-end-localized polarity determinants Tea1p, Tea4p/Wsh3p, and Pom1p (tip complex), which prevents division-septum assembly at the cell ends. While Mid1p and the tip complex are dispensable for cell viability, their simultaneous loss leads to lethality. The FER/CIP homology protein Cdc15p, which organizes the actomyosin ring and cell membranes during cytokinesis, is a candidate for regulation by the tip complex. Since dual regulation of division-site placement is also seen in nematodes, such regulation might be a general feature of eukaryotic cytokinesis.


Assuntos
Polaridade Celular , Citocinese , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Actomiosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento
20.
J Cell Sci ; 123(Pt 24): 4374-81, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21098641

RESUMO

Regulated gene expression makes an important contribution to cell cycle control mechanisms. In fission yeast, a group of genes is coordinately expressed during a late stage of the cell cycle (M phase and cytokinesis) that is controlled by common cis-acting promoter motifs named pombe cell cycle boxes (PCBs), which are bound by a trans-acting transcription factor complex, PCB binding factor (PBF). PBF contains at least three transcription factors, a MADS box protein Mbx1p and two forkhead transcription factors, Sep1p and Fkh2p. Here we show that the fission yeast Cdc14p-like phosphatase Clp1p (Flp1p) controls M-G1 specific gene expression through PBF. Clp1p binds in vivo both to Mbx1p, a MADS box-like transcription factor, and to the promoters of genes transcribed at this cell cycle time. Because Clp1p dephosphorylates Mbx1p in vitro, and is required for Mbx1p cell cycle-specific dephosphorylation in vivo, our observations suggest that Clp1p controls cell cycle-specific gene expression through binding to and dephosphorylating Mbx1p.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Fase G1/genética , Genes Fúngicos/genética , Mitose/genética , Modelos Genéticos , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA