Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 146: 105543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081574

RESUMO

Multiple in vitro eye irritation methods have been developed and adopted as OECD health effects test guidelines. However, for predicting the ocular irritation/damage potential of agrochemical formulations there is an applicability domain knowledge gap for most of the methods. To overcome this gap, a retrospective evaluation of 192 agrochemical formulations with in vivo (OECD TG 405) and in vitro (OECD TG 437, 438, and/or 492) data was conducted to determine if the in vitro methods could accurately assign United Nations Globally Harmonized System for Classification and Labelling of Chemicals (GHS) eye irritation hazard classifications. In addition, for each formulation the eye irritation classification was derived from the classification of the contained hazardous ingredients and their respective concentration in the product using the GHS concentration threshold (CT) approach. The results herein suggest that the three in vitro methods and the GHS CT approach were highly predictive of formulations that would not require GHS classification for eye irritation. Given most agrochemical formulations fall into this category, methods that accurately identify non-classified agrochemical formulations could significantly reduce the use of animals for this endpoint.


Assuntos
Agroquímicos , Irritantes , Animais , Agroquímicos/toxicidade , Agroquímicos/química , Estudos Retrospectivos , Alternativas aos Testes com Animais , Olho
2.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35311659

RESUMO

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Assuntos
Neoplasias , Praguicidas , Agroquímicos/toxicidade , Animais , Bioensaio , Testes de Carcinogenicidade , Praguicidas/toxicidade , Medição de Risco , Roedores
3.
J Pharmacol Exp Ther ; 320(1): 194-201, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17050782

RESUMO

The majority of rodent models used to evaluate analgesic drug effects rely on evoked measures of nociceptive thresholds as primary outcomes. These approaches are often time-consuming, requiring extensive habituation sessions and repeated presentations of eliciting stimuli, and are prone to false-positive outcomes due to sedation or tester subjectivity. Here, we describe the reduction of spontaneous activity by adjuvant (RSAA) model as an objective and quantifiable behavioral model of inflammatory pain that can predict the analgesic activity of a variety of agents following single-dose administration. In the RSAA model, activity was measured in nonhabituated rats using standard, photocell-based monitors. Bilateral inflammation of the knee joints by complete Freund's adjuvant (CFA) reduced the normal level of activity (horizontal locomotion and vertical rearing) by approximately 60% in a novel environment. This reduction in activity was dose-dependently reversed by ibuprofen, rofecoxib, celecoxib, piroxicam, and dexamethasone, whereas gabapentin and amitriptyline were inactive. Morphine significantly reversed the activity-suppressing effects of CFA, at 1 mg/kg s.c., but at higher doses locomotor activity progressively declined, coincident with the induction of sedation. In contrast to morphine and anti-inflammatory therapies, amphetamine did not affect vertical rearing, even though it increased horizontal locomotion. Thus, unlike standard measures of analgesia such as alteration in thermal or mechanical sensitivity, the RSAA model operationally defines analgesia as a drug-induced increase in spontaneous behavior (vertical rearing in a novel environment). We conclude that the RSAA model is valuable as an objective measure of analgesic efficacy that is not dependent on an evoked stimulus response.


Assuntos
Analgésicos/farmacologia , Adjuvante de Freund/farmacologia , Inflamação/psicologia , Atividade Motora/efeitos dos fármacos , Analgesia , Animais , Carragenina/farmacologia , Celecoxib , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Caulim/farmacologia , Masculino , Modelos Animais , Morfina/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA