Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(29): 13099-13109, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38977377

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are surfactants that can accumulate in the surface microlayer (SML) and in natural foams, with potential elevated exposure for organisms at the water surface. However, the impact of water chemistry on PFAS accumulation in these matrices in freshwater systems is unknown. We quantified 36 PFAS in water, the SML, and natural foams from 43 rivers and lakes in Wisconsin, USA, alongside measurements of pH, cations, and dissolved organic carbon (DOC). PFAS partition to foams with concentration ranging 2300-328,200 ng/L in waters with 6-139 ng/L PFAS (sum of 36 analytes), corresponding to sodium-normalized enrichment factors ranging <50 to >7000. Similar enrichment is observed for DOC (∼70). PFAS partitioning to foams increases with increasing chain length and is positively correlated with [DOC]. Modest SML enrichment is observed for PFOS (1.4) and FOSA (2.4), while negligible enrichment is observed for other PFAS and DOC due to low specific surface area and turbulent conditions that inhibit surfactant accumulation. However, DOC composition in the SML is distinct from bulk water, as assessed using high-resolution mass spectrometry. This study demonstrates that natural foams in unimpacted and impacted waters can have elevated PFAS concentrations, whereas SML accumulation in surface waters is limited.


Assuntos
Fluorocarbonos , Água Doce , Poluentes Químicos da Água , Água Doce/química , Tensoativos/química , Lagos/química , Monitoramento Ambiental , Rios/química
2.
Environ Sci Technol ; 57(1): 244-254, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36573898

RESUMO

Forensic analysis can potentially be used to determine per- and polyfluoroalkyl substance (PFAS) sources at contaminated sites. However, fluorotelomer aqueous film-forming foam (AFFF) sources are difficult to identify because the polyfluorinated active ingredients do not have authentic standards and because the parent compounds can undergo transformation and differential transport, resulting in alteration of the PFAS distribution or fingerprint. In this study, we investigate changes in the PFAS fingerprint of fluorotelomer-derived AFFF due to environmental and engineered processes, including groundwater transport, surface water flow, and land application of contaminated biosolids. Fingerprint analysis supplemented by quantification of precursors and identification of suspected active ingredients shows a clear correlation between a fluorotelomer AFFF manufacturer and surface water of nearby Lake Michigan, demonstrating contamination (>100 ng/L PFOA) of the lake due to migration of an AFFF-impacted groundwater plume. In contrast, extensive processing during wastewater treatment and environmental transport results in large changes to the AFFF fingerprint near agricultural fields where contaminated biosolids were spread. At biosolids-impacted sites, the presence of active ingredients confirms contamination by fluorotelomer AFFF. While sediments can retain longer-chain PFAS, this study demonstrates that aqueous samples are most relevant for PFAS fingerprinting in complex sites, particularly where shorter-chain compounds have been used.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Biossólidos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Água
3.
Environ Sci Technol ; 51(11): 6053-6062, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445042

RESUMO

Bisphenol A (BPA) is an endocrine-disrupting compound widely used in the plastic industry and found in natural waters at concentrations considered harmful for aquatic life. BPA is susceptible to oxidation by Mn(III/IV) oxides, which are commonly found in near-surface environments. Here, we quantify BPA oxidation rates and the formation of its predominant product, 4-hydroxycumyl alcohol (HCA), in tandem with transformation of a synthetic, Mn(III)-rich δ-MnO2. To investigate the effect of Mn oxide structural changes on BPA oxidation rate, 12 sequential additions of 80 µM BPA are performed at pH 7. During the additions, BPA oxidation rate decreases by 3 orders of magnitude, and HCA yield decreases from 40% to 3%. This is attributed to the accumulation of interlayer Mn(II/III) produced during the reaction, as observed using X-ray absorption spectroscopy, as well as additional spectroscopic and wet chemical techniques. HCA is oxidized at a rate that is 12.6 times slower than BPA and accumulates in solution. These results demonstrate that BPA degradation by environmentally relevant Mn(III/IV) oxides is inhibited by the buildup of solid-phase Mn(II/III), specifically in interlayer sites. Nevertheless, Mn oxides may limit BPA migration in near-surface environments and have potential for use in drinking and wastewater treatment.


Assuntos
Compostos Benzidrílicos/química , Fenóis/química , Poluentes Químicos da Água/química , Compostos de Manganês , Oxirredução , Óxidos
4.
Chemosphere ; 327: 138467, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966934

RESUMO

Naturally occurring manganese (Mn) oxide minerals often form by microbial Mn(II) oxidation, resulting in nanocrystalline Mn(III/IV) oxide phases with high reactivity that can influence the uptake and release of many metals (e.g., Ni, Cu, Co, and Zn). During formation, the structure and composition of biogenic Mn oxides can be altered in the presence of other metals, which in turn affects the minerals' ability to bind these metals. These processes are further influenced by the chemistry of the aqueous environment and the type and physiology of microorganisms involved. Conditions extending to environments that typify mining and industrial wastewaters (e.g., increased salt content, low nutrient, and high metal concentrations) have not been well investigated thus limiting the understanding of metal interactions with biogenic Mn oxides. By integrating geochemistry, microscopic, and spectroscopic techniques, we examined the capacity of Mn oxides produced by the Mn(II)-oxidizing Ascomycete fungus Periconia sp. SMF1 isolated from the Minnesota Soudan Mine to remove the metal co-contaminant Co(II) from synthetic waters that are representative of mining wastewaters currently undergoing remediation efforts. We compared two different applied remediation strategies under the same conditions: coprecipitation of Co with mycogenic Mn oxides versus adsorption of Co with pre-formed fungal Mn oxides. Co(II) was effectively removed from solution by fungal Mn oxides through two different mechanisms: incorporation into, and adsorption onto, Mn oxides. These mechanisms were similar for both remediation strategies, indicating the general effectiveness of Co(II) removal by these oxides. The mycogenic Mn oxides were primarily a nanoparticulate, poorly-crystalline birnessite-like phases with slight differences depending on the chemical conditions during formation. The relatively fast and complete removal of aqueous Co(II) during biomineralization as well as the subsequent structural incorporation of Co into the Mn oxide structure illustrated a sustainable cycle capable of continuously remediating Co(II) from metal-polluted environments.


Assuntos
Ascomicetos , Águas Residuárias , Óxidos/química , Compostos de Manganês/química , Oxirredução , Metais , Minerais , Ascomicetos/metabolismo , Mineração , Adsorção
5.
J Environ Qual ; 49(6): 1644-1654, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33459423

RESUMO

Many phenolic compounds found as contaminants in natural waters are susceptible to oxidation by manganese oxides. However, there is often variability between oxidation rates reported in pristine matrices and studies using more environmentally relevant conditions. For example, the presence of cations generally results in slower phenolic oxidation rates. However, the underlying mechanism of cation interference is not well understood. In this study, cation co-solutes inhibit the transformation of four target phenols (bisphenol A, estrone, p-cresol, and triclosan) by acid birnessite. Oxidation rates for these compounds by acid birnessite follow the same trend (Na+ > K+ > Mg2+ > Ca2+) when cations are present as co-solutes. We further demonstrate that the same trend applies to these cations when they are absent from solution but pre-exchanged with the mineral. We analyze valence state, surface area, crystallinity, and zeta potential to characterize changes in oxide structure. The findings of this study show that pre-exchanged cations have a large effect on birnessite reactivity even in the absence of cation co-solutes, indicating that the inhibition of phenolic compound oxidation is not due to competition for surface sites, as previously suggested. Instead, the reaction inhibition is attributed to changes in aggregation and the mineral microstructure.


Assuntos
Óxidos , Fenol , Cátions , Oxirredução , Fenóis
6.
Environ Sci Process Impacts ; 21(1): 19-27, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30542685

RESUMO

Bisphenol A (BPA) is an endocrine disrupting compound commonly found in natural waters at concentrations that are considered harmful for aquatic life. Manganese(iii/iv) oxides are strong oxidants capable of oxidizing organic and inorganic contaminants, including BPA. Here we use δ-MnO2 in stirred flow reactors to determine if higher influent BPA concentrations, or introduction rates, lead to increased polymer production. A major BPA oxidation product, 4-hydroxycumyl alcohol (HCA), is formed through radical coupling, and was therefore used as a metric for polymer production in this study. The influent BPA concentration in stirred flow reactors did not affect HCA yield, suggesting that polymeric production is not strongly dependent on influent concentrations. However, changes in influent BPA concentration affected BPA oxidation rates and the rate of δ-MnO2 reduction. Lower aqueous Mn(ii) production was observed in reactors at higher BPA introduction rates, suggesting that single-electron transfer and polymer production are favored under these conditions. However, an examination of Mn(ii) sorption during these reactions indicated that the length of the reaction, rather than BPA introduction rate, caused enhanced aqueous Mn(ii) production in reactors with low introduction rates and longer reaction times due to increased opportunity for disproportionation and comproportionation. This study demonstrates the importance of investigating both the organic and inorganic reactants in the aqueous and solid phases in this complex reaction.


Assuntos
Compostos Benzidrílicos/química , Disruptores Endócrinos/química , Compostos de Manganês/química , Óxidos/química , Fenóis/química , Reatores Biológicos , Oxirredução , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA