Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 18(8): e1010321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35969643

RESUMO

Cryptococcosis is a potentially lethal fungal infection of humans caused by organisms within the Cryptococcus neoformans/gattii species complex. Whilst C. neoformans is a relatively common pathogen of immunocompromised individuals, C. gattii is capable of acting as a primary pathogen of immunocompetent individuals. Within the host, both species undergo morphogenesis to form titan cells: exceptionally large cells that are critical for disease establishment. To date, the induction, defining attributes, and underlying mechanism of titanisation have been mainly characterized in C. neoformans. Here, we report the serendipitous discovery of a simple and robust protocol for in vitro induction of titan cells in C. gattii. Using this in vitro approach, we reveal a remarkably high capacity for titanisation within C. gattii, especially in strains associated with the Pacific Northwest Outbreak, and characterise strain-specific differences within the clade. In particular, this approach demonstrates for the first time that cell size changes, DNA amplification, and budding are not always synchronous during titanisation. Interestingly, however, exhibition of these cell cycle phenotypes was correlated with genes associated with cell cycle progression including CDC11, CLN1, BUB2, and MCM6. Finally, our findings reveal exogenous p-Aminobenzoic acid to be a key inducer of titanisation in this organism. Consequently, this approach offers significant opportunities for future exploration of the underlying mechanism of titanisation in this genus.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Proteínas Fúngicas , Humanos , Hospedeiro Imunocomprometido , Componente 6 do Complexo de Manutenção de Minicromossomo
3.
Mol Biol Evol ; 38(5): 1837-1846, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33313834

RESUMO

The RNase II family of 3'-5' exoribonucleases is present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like "pseudonucleases." The latter function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. However, the evolutionary origins of these pseudonucleases are unknown: What sequence of events led to their novel function, and when did these events occur? Here, we show how RNase II pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. In contrast, N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the nonnuclease function requires these regions. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid "titan" growth stages. This phenotype of C. neoformans Ssd1/Dis3L2 deletion is consistent with those of inactive fungal pseudonucleases, yet the protein retains an active site sequence signature. We propose that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, whereas the RNase activity was lost repeatedly in independent lineages.


Assuntos
Ascomicetos/genética , Evolução Molecular , Exorribonucleases/genética , Família Multigênica , Ascomicetos/enzimologia , Domínio Catalítico/genética , Cryptococcus neoformans/fisiologia , Citocinese , Filogenia , Proteínas de Saccharomyces cerevisiae/genética
4.
Semin Cell Dev Biol ; 89: 34-46, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29522807

RESUMO

The balance between reactive oxygen species and reactive nitrogen species production by the host and stress response by fungi is a key axis of the host-pathogen interaction. This review will describe emerging themes in fungal pathogenesis underpinning this axis.


Assuntos
Fungos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Micoses/metabolismo , Estresse Oxidativo/imunologia , Fungos/imunologia , Fungos/patogenicidade , Humanos , Micoses/microbiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS Pathog ; 14(5): e1007013, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29727465

RESUMO

Nutritional immunity describes the host-driven manipulation of essential micronutrients, including iron, zinc and manganese. To withstand nutritional immunity and proliferate within their hosts, pathogenic microbes must express efficient micronutrient uptake and homeostatic systems. Here we have elucidated the pathway of cellular zinc assimilation in the major human fungal pathogen Candida albicans. Bioinformatics analysis identified nine putative zinc transporters: four cytoplasmic-import Zip proteins (Zrt1, Zrt2, Zrt3 and orf19.5428) and five cytoplasmic-export ZnT proteins (orf19.1536/Zrc1, orf19.3874, orf19.3769, orf19.3132 and orf19.52). Only Zrt1 and Zrt2 are predicted to localise to the plasma membrane and here we demonstrate that Zrt2 is essential for C. albicans zinc uptake and growth at acidic pH. In contrast, ZRT1 expression was found to be highly pH-dependent and could support growth of the ZRT2-null strain at pH 7 and above. This regulatory paradigm is analogous to the distantly related pathogenic mould, Aspergillus fumigatus, suggesting that pH-adaptation of zinc transport may be conserved in fungi and we propose that environmental pH has shaped the evolution of zinc import systems in fungi. Deletion of C. albicans ZRT2 reduced kidney fungal burden in wild type, but not in mice lacking the zinc-chelating antimicrobial protein calprotectin. Inhibition of zrt2Δ growth by neutrophil extracellular traps was calprotectin-dependent. This suggests that, within the kidney, C. albicans growth is determined by pathogen-Zrt2 and host-calprotectin. As well as serving as an essential micronutrient, zinc can also be highly toxic and we show that C. albicans deals with this potential threat by rapidly compartmentalising zinc within vesicular stores called zincosomes. In order to understand mechanistically how this process occurs, we created deletion mutants of all five ZnT-type transporters in C. albicans. Here we show that, unlike in Saccharomyces cerevisiae, C. albicans Zrc1 mediates zinc tolerance via zincosomal zinc compartmentalisation. This novel transporter was also essential for virulence and liver colonisation in vivo. In summary, we show that zinc homeostasis in a major human fungal pathogen is a multi-stage process initiated by Zrt1/Zrt2-cellular import, followed by Zrc1-dependent intracellular compartmentalisation.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Zinco/metabolismo , Adaptação Fisiológica , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Candida albicans/genética , Candidíase Invasiva/metabolismo , Candidíase Invasiva/microbiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Compartimento Celular , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Fúngicos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Virulência/genética , Virulência/fisiologia , Zinco/toxicidade
6.
PLoS Pathog ; 14(5): e1006978, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775474

RESUMO

Fungal cells change shape in response to environmental stimuli, and these morphogenic transitions drive pathogenesis and niche adaptation. For example, dimorphic fungi switch between yeast and hyphae in response to changing temperature. The basidiomycete Cryptococcus neoformans undergoes an unusual morphogenetic transition in the host lung from haploid yeast to large, highly polyploid cells termed Titan cells. Titan cells influence fungal interaction with host cells, including through increased drug resistance, altered cell size, and altered Pathogen Associated Molecular Pattern exposure. Despite the important role these cells play in pathogenesis, understanding the environmental stimuli that drive the morphological transition, and the molecular mechanisms underlying their unique biology, has been hampered by the lack of a reproducible in vitro induction system. Here we demonstrate reproducible in vitro Titan cell induction in response to environmental stimuli consistent with the host lung. In vitro Titan cells exhibit all the properties of in vivo generated Titan cells, the current gold standard, including altered capsule, cell wall, size, high mother cell ploidy, and aneuploid progeny. We identify the bacterial peptidoglycan subunit Muramyl Dipeptide as a serum compound associated with shift in cell size and ploidy, and demonstrate the capacity of bronchial lavage fluid and bacterial co-culture to induce Titanisation. Additionally, we demonstrate the capacity of our assay to identify established (cAMP/PKA) and previously undescribed (USV101) regulators of Titanisation in vitro. Finally, we investigate the Titanisation capacity of clinical isolates and their impact on disease outcome. Together, these findings provide new insight into the environmental stimuli and molecular mechanisms underlying the yeast-to-Titan transition and establish an essential in vitro model for the future characterization of this important morphotype.


Assuntos
Cryptococcus neoformans/citologia , Cryptococcus neoformans/patogenicidade , Animais , Criptococose/microbiologia , Cryptococcus neoformans/genética , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Hifas/citologia , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Pulmão/microbiologia , Pneumopatias Fúngicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Morfogênese , Poliploidia , Fatores de Transcrição/metabolismo , Virulência
7.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670549

RESUMO

Disseminated infections with the fungal species Cryptococcus neoformans or, less frequently, Cryptococcus gattii are an important cause of mortality in immunocompromised individuals. Central to the virulence of both species is an elaborate polysaccharide capsule that consists predominantly of glucuronoxylomannan (GXM). Due to its abundance, GXM is an ideal target for host antibodies, and several monoclonal antibodies (mAbs) have previously been derived using purified GXM or whole capsular preparations as antigens. In addition to their application in the diagnosis of cryptococcosis, anti-GXM mAbs are invaluable tools for studying capsule structure. In this study, we report the production and characterization of a novel anti-GXM mAb, Crp127, that unexpectedly reveals a role for GXM remodeling during the process of fungal titanization. We show that Crp127 recognizes a GXM epitope in an O-acetylation-dependent, but xylosylation-independent, manner. The epitope is differentially expressed by the four main serotypes of Cryptococcus neoformans and C. gattii, is heterogeneously expressed within clonal populations of C. gattii serotype B strains, and is typically confined to the central region of the enlarged capsule. Uniquely, however, this epitope redistributes to the capsular surface in titan cells, a recently characterized morphotype where haploid 5-µm cells convert to highly polyploid cells of >10 µm with distinct but poorly understood capsular characteristics. Titan cells are produced in the host lung and critical for successful infection. Crp127 therefore advances our understanding of cryptococcal morphological change and may hold significant potential as a tool to differentially identify cryptococcal strains and subtypes.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/imunologia , Epitopos/imunologia , Polissacarídeos/imunologia , Animais , Anticorpos Antifúngicos/imunologia , Criptococose/imunologia , Cryptococcus neoformans/química , Cryptococcus neoformans/patogenicidade , Humanos , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Sorogrupo , Especificidade da Espécie , Virulência
8.
PLoS Pathog ; 13(5): e1006403, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542528

RESUMO

Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and ß-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory ß-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased ß-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this "unmasking" of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Parede Celular/imunologia , Animais , Candida albicans/fisiologia , Candidíase/microbiologia , Parede Celular/química , Humanos , Concentração de Íons de Hidrogênio , Imunidade Inata , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos
9.
PLoS Pathog ; 12(4): e1005566, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27073846

RESUMO

Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in environmental niches, the more flexible carbon assimilation strategies offered by Crabtree negativity enhance the ability of yeasts to colonize and infect the mammalian host.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/metabolismo , Macrófagos/microbiologia , Saccharomyces cerevisiae/metabolismo , Virulência/fisiologia , Animais , Western Blotting , Metabolismo dos Carboidratos , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ubiquitinação
10.
J Exp Biol ; 217(Pt 1): 144-55, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24353214

RESUMO

Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of a number of regulators in C. albicans have diverged relative to the benign model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This reflects the specific evolution of C. albicans as an opportunistic pathogen obligately associated with warm-blooded animals, compared with other yeasts that are found across diverse environmental niches. Our understanding of C. albicans stress signalling is based primarily on the in vitro responses of glucose-grown cells to individual stresses. However, in vivo this pathogen occupies complex and dynamic host niches characterised by alternative carbon sources and simultaneous exposure to combinations of stresses (rather than individual stresses). It has become apparent that changes in carbon source strongly influence stress resistance, and that some combinatorial stresses exert non-additive effects upon C. albicans. These effects, which are relevant to fungus-host interactions during disease progression, are mediated by multiple mechanisms that include signalling and chemical crosstalk, stress pathway interference and a biological transistor.


Assuntos
Candida albicans/patogenicidade , Glucose/metabolismo , Resposta ao Choque Térmico/fisiologia , Pressão Osmótica/fisiologia , Estresse Oxidativo/fisiologia , Adaptação Fisiológica , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transdução de Sinais
11.
Eukaryot Cell ; 12(11): 1462-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014765

RESUMO

Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1). Classically, the variable (X) amino acid determines whether a protein will be an Ftase or Ggtase-I substrate, with Ggtase-I substrates often containing CaaL motifs. In this study, we identify the gene encoding the ß subunit of Ggtase-I (CDC43) and demonstrate that Ggtase-mediated activity is not essential. However, Cryptococcus neoformans CDC43 is important for thermotolerance, morphogenesis, and virulence. We find that Ggtase-I function is required for full membrane localization of Rho10 and the two Cdc42 paralogs (Cdc42 and Cdc420). Interestingly, the related Rac and Ras proteins are not mislocalized in the cdc43Δ mutant even though they contain similar CaaL motifs. Additionally, the membrane localization of each of these GTPases is dependent on the prenylation of the CaaX cysteine. These results indicate that C. neoformans CaaX prenyltransferases may recognize their substrates in a unique manner from existing models of prenyltransferase specificity. It also suggests that the C. neoformans Ftase, which has been shown to be more important for C. neoformans proliferation and viability, may be the primary prenyltransferase for proteins that are typically geranylgeranylated in other species.


Assuntos
Alquil e Aril Transferases/metabolismo , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Alquil e Aril Transferases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Proteínas Fúngicas/genética , Prenilação de Proteína , Especificidade por Substrato , Virulência/genética
12.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398450

RESUMO

Cryptococcus is a fungal pathogen whose virulence relies on proliferation in and dissemination to host sites, and on synthesis of a defensive yet metabolically costly polysaccharide capsule. Regulatory pathways required for Cryptococcus virulence include a GATA-like transcription factor, Gat201, that regulates Cryptococcal virulence in both capsule-dependent and capsule-independent ways. Here we show that Gat201 is part of a negative regulatory pathway that limits fungal survival. RNA-seq analysis found strong induction of GAT201 expression within minutes of transfer to host-like media at alkaline pH. Microscopy, growth curves, and colony forming units to test viability show that in host-like media at alkaline pH wild-type Cryptococcus neoformans yeast cells produce capsule but do not bud or maintain viability, while gat201Δ cells make buds and maintain viability, yet fail to produce capsule. GAT201 is required for transcriptional upregulation of a specific set of genes in host-like media, the majority of which are direct Gat201 targets. Evolutionary analysis shows that Gat201 is conserved within pathogenic fungi but lost in model yeasts. This work identifies the Gat201 pathway as controlling a trade-off between proliferation, which we showed is repressed by GAT201, and production of defensive capsule. The assays established here will allow characterisation of the mechanisms of action of the Gat201 pathway. Together, our findings urge improved understanding of the regulation of proliferation as a driver of fungal pathogenesis.

13.
mBio ; 15(4): e0307823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511961

RESUMO

Cryptococcus neoformans causes lethal meningitis and accounts for approximately 10%-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this fungus invades the mammalian brain. To investigate the dynamics of C. neoformans tissue invasion, we mapped fungal localization and host cell interactions in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. We confirm high fungal burden in mouse upper airway after nasal inoculation. Yeast in turbinates were frequently titan cells, with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of the upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, by finding viable fungi in the bloodstream of mice a few days after intranasal infection. As early as 24 h post systemic infection, the majority of C. neoformans cells traversed the blood-brain barrier, and were engulfed or in close proximity to microglia. Our work presents a new method for investigating microbial invasion, establishes that C. neoformans can breach multiple tissue barriers within the first days of infection, and demonstrates microglia as the first cells responding to C. neoformans invasion of the brain.IMPORTANCECryptococcal meningitis causes 10%-15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function.


Assuntos
Síndrome da Imunodeficiência Adquirida , Criptococose , Cryptococcus neoformans , Meningite , Camundongos , Animais , Microglia , Criptococose/microbiologia , Encéfalo/microbiologia , Mamíferos
14.
Nat Rev Microbiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918447

RESUMO

Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.

15.
Nat Commun ; 14(1): 7202, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938547

RESUMO

Microglia provide protection against a range of brain infections including bacteria, viruses and parasites, but how these glial cells respond to fungal brain infections is poorly understood. We investigated the role of microglia in the context of cryptococcal meningitis, the most common cause of fungal meningitis in humans. Using a series of transgenic- and chemical-based microglia depletion methods we found that, contrary to their protective role during other infections, loss of microglia did not affect control of Cryptococcus neoformans brain infection which was replicated with several fungal strains. At early time points post-infection, we found that microglia depletion lowered fungal brain burdens, which was related to intracellular residence of C. neoformans within microglia. Further examination of extracellular and intracellular fungal populations revealed that C. neoformans residing in microglia were protected from copper starvation, whereas extracellular yeast upregulated copper transporter CTR4. However, the degree of copper starvation did not equate to fungal survival or abundance of metals within different intracellular niches. Taken together, these data show how tissue-resident myeloid cells may influence fungal phenotype in the brain but do not provide protection against this infection, and instead may act as an early infection reservoir.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Humanos , Meningite Criptocócica/prevenção & controle , Microglia , Cobre , Neuroglia
16.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014111

RESUMO

The fungus Cryptococcus neoformans causes lethal meningitis in humans with weakened immune systems and is estimated to account for 10-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this environmental fungus evades the immune system and invades the mammalian brain before the onset of overt symptoms. To investigate the dynamics of C. neoformans tissue invasion, we mapped early fungal localisation and host cell interactions at early times in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. Made possible by these techniques, we confirm high fungal burden in mouse upper airway turbinates after nasal inoculation. Surprisingly, most yeasts in turbinates were titan cells, indicating this microenvironment enables titan cell formation with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, via imaging C. neoformans within blood vessels of mouse lungs and finding viable fungi in the bloodstream of mice a few days after intranasal infection, suggesting that bloodstream access can occur via lung alveoli. In a model of systemic cryptococcosis, we show that as early as 24 h post infection, majority of C. neoformans cells traversed the blood-brain barrier, and are engulfed or in close proximity to microglia. Our work establishes that C. neoformans can breach multiple tissue barriers within the first days of infection. This work presents a new method for investigating cryptococcal invasion mechanisms and demonstrates microglia as the primary cells responding to C. neoformans invasion.

17.
JMIR Res Protoc ; 12: e48014, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581914

RESUMO

BACKGROUND: Fungal-bacterial cocolonization and coinfections pose an emerging challenge among patients suspected of having pulmonary tuberculosis (PTB); however, the underlying pathogenic mechanisms and microbiome interactions are poorly understood. Understanding how environmental microbes, such as fungi and bacteria, coevolve and develop traits to evade host immune responses and resist treatment is critical to controlling opportunistic pulmonary fungal coinfections. In this project, we propose to study the coexistence of fungal and bacterial microbial communities during chronic pulmonary diseases, with a keen interest in underpinning fungal etiological evolution and the predominating interactions that may exist between fungi and bacteria. OBJECTIVE: This is a protocol for a study aimed at investigating the metabolic and molecular ecological evolution of opportunistic pulmonary fungal coinfections through determining and characterizing the burden, etiological profiles, microbial communities, and interactions established between fungi and bacteria as implicated among patients with presumptive PTB. METHODS: This will be a laboratory-based cross-sectional study, with a sample size of 406 participants. From each participant, 2 sputa samples (one on-spot and one early morning) will be collected. These samples will then be analyzed for both fungal and bacterial etiology using conventional metabolic and molecular (intergenic transcribed spacer and 16S ribosomal DNA-based polymerase chain reaction) approaches. We will also attempt to design a genome-scale metabolic model for pulmonary microbial communities to analyze the composition of the entire microbiome (ie, fungi and bacteria) and investigate host-microbial interactions under different patient conditions. This analysis will be based on the interplays of genes (identified by metagenomics) and inferred from amplicon data and metabolites (identified by metabolomics) by analyzing the full data set and using specific computational tools. We will also collect baseline data, including demographic and clinical history, using a patient-reported questionnaire. Altogether, this approach will contribute to a diagnostic-based observational study. The primary outcome will be the overall fungal and bacterial diagnostic profile of the study participants. Other diagnostic factors associated with the etiological profile, such as incidence and prevalence, will also be analyzed using univariate and multivariate schemes. Odds ratios with 95% CIs will be presented with a statistical significance set at P<.05. RESULTS: The study has been approved by the Mbarara University Research Ethic Committee (MUREC1/7-07/09/20) and the Uganda National Council of Science and Technology (HS1233ES). Following careful scrutiny, the protocol was designed to enable patient enrollment, which began in March 2022 at Mbarara University Teaching Hospital. Data collection is ongoing and is expected to be completed by August 2023, and manuscripts will be submitted for publication thereafter. CONCLUSIONS: Through this protocol, we will explore the metabolic and molecular ecological evolution of opportunistic pulmonary fungal coinfections among patients with presumptive PTB. Establishing key fungal-bacterial cross-kingdom synergistic relationships is crucial for instituting fungal bacterial coinfecting etiology. TRIAL REGISTRATION: ISRCTN Registry ISRCTN33572982; https://tinyurl.com/caa2nw69. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48014.

18.
Eukaryot Cell ; 10(10): 1306-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821718

RESUMO

The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G(1) cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/citologia , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Animais , Cryptococcus neoformans/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Humanos , Camundongos
19.
Cell Host Microbe ; 30(10): 1341-1342, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228579

RESUMO

Pathogenic fungi have the remarkable ability to undergo morphological changes that can determine their virulence potential. In this issue of Cell Host & Microbe, Denham et al. identify a fungal morphotype that is uniquely adapted for extrapulmonary dissemination, contributing toward invasive infection and escaping host immune responses.


Assuntos
Adaptação Fisiológica , Fungos , Sementes , Virulência
20.
Curr Biol ; 32(5): 1115-1130.e6, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35134329

RESUMO

Opportunistic infections by environmental fungi are a growing clinical problem, driven by an increasing population of people with immunocompromising conditions. Spores of the Mucorales order are ubiquitous in the environment but can also cause acute invasive infections in humans through germination and evasion of the mammalian host immune system. How they achieve this and the evolutionary drivers underlying the acquisition of virulence mechanisms are poorly understood. Here, we show that a clinical isolate of Rhizopus microsporus contains a Ralstonia pickettii bacterial endosymbiont required for virulence in both zebrafish and mice and that this endosymbiosis enables the secretion of factors that potently suppress growth of the soil amoeba Dictyostelium discoideum, as well as their ability to engulf and kill other microbes. As amoebas are natural environmental predators of both bacteria and fungi, we propose that this tri-kingdom interaction contributes to establishing endosymbiosis and the acquisition of anti-phagocyte activity. Importantly, we show that this activity also protects fungal spores from phagocytosis and clearance by human macrophages, and endosymbiont removal renders the fungal spores avirulent in vivo. Together, these findings describe a new role for a bacterial endosymbiont in Rhizopus microsporus pathogenesis in animals and suggest a mechanism of virulence acquisition through environmental interactions with amoebas.


Assuntos
Amoeba , Dictyostelium , Animais , Bactérias , Fungos , Humanos , Mamíferos , Camundongos , Fagócitos , Rhizopus , Virulência , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA