Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 24(24): e202300501, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37743538

RESUMO

Telomere elongation by telomerase consists of two types of translocation: duplex translocation during each repeat synthesis and template translocation at the end of repeat synthesis. Our replica exchange molecular dynamics simulations show that in addition to the Watson-Crick interactions in the active site, templating RNA can also form base pairs with the upstream regions of DNA, mostly with the second upstream DNA repeat with respect to the 3'-end. At the end of the repeat synthesis, dG10-P442 and dG11-N446 hydrogen bonds form. Then, active-site base pairs dissociate one by one, and the RNA bases reanneal with the complementary base on the upstream DNA repeat. For each dissociating base pair a new one forms, thus conserving the number of base pairs during template translocation.


Assuntos
RNA , Telomerase , RNA/química , Pareamento de Bases , Telomerase/metabolismo , DNA/genética , Primers do DNA
2.
ACS Omega ; 8(7): 7191-7200, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844589

RESUMO

Cellular prion protein PrPC consists of three α-helices, one ß-sheet, and an unstructured N-terminal domain. Misfolding of this protein into the scrapie form (PrPSc) increases dramatically the ß-sheet content. H1 is the most stable helix on PrPC and contains an unusual number of hydrophilic amino acids. Its fate in PrPSc is not clear. We performed replica exchange molecular dynamics simulations on H1 alone, H1 together with an N-terminally flanking H1B1 loop and H1 in complex with other hydrophilic regions of the prion protein. In the presence of the H99SQWNKPSKPKTNMK113 sequence, H1 is almost completely converted to a loop structure stabilized by a network of salt bridges. On the other hand, H1 retains its helical structure alone or together with the other sequences considered in this study. We carried out an additional simulation by restraining the distance between the two ends of H1, mimicking a possible geometric restriction by the rest of the protein. Even though the loop was the major conformation, a significant amount of helical structure was also observed. This suggests that the interaction with H99SQWNKPSKPKTNMK113 is necessary for complete helix-to-loop conversion.

3.
J Org Chem ; 73(13): 4800-9, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18543970

RESUMO

The Claisen rearrangement of 1-methyl-2-isopropyoxycarbonyl-6-propyl allyl vinyl ether catalyzed by copper(II) bisoxazoline (Cu-box) has been investigated using density functional theory. Both the phenyl- and tert-butyl-substituted Cu-box systems have been studied. Three different reaction media (vacuum, CH2Cl2, CH3CN) have been considered. In vacuum, the phenyl Cu-box catalyzed reaction yields a (1R,6R) configured major product with a low selectivity. The solvent induces a higher selectivity and a reversal of the absolute configuration (1S,6S). However, the tert-butyl Cu-box catalyzed reaction yields (1R,6R) as the major product both in the gas phase and in the solvent with a good selectivity. Although chair-like TSs are lower in energy than boat-like TSs, the energy difference is small. This is because in the presence of the catalyst the distance between the allyl and vinyl parts of the substrate is relatively large, and thus the steric repulsion between them is smaller than would normally be expected for boat-like structures. The enantioselectivity of tert-butyl Cu-box originates from the steric interactions between the substrate and the catalyst, which are less important for the phenyl Cu-box where the enantioselectivity is determined by the solvent effects.

4.
J Am Soc Mass Spectrom ; 14(10): 1192-203, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14530099

RESUMO

The elimination of water from the carboxyl group of protonated diglycine has been investigated by density functional theory calculations. The resulting structure is identical to the b(2) ion formed in the mass spectrometric fragmentation of protonated peptides (therefore named "b2" in this study). The most stable geometry of the fragment ion ("b2") is an O-protonated diketopiperazine. However, its formation is kinetically disfavored as it requires a free energy of 58.2 kcal/mol. The experimentally observed N-protonated oxazolone is 3.0 kcal/mol less stable. The lowest energy pathway for the formation of the "b2" ion requires a free energy of 37.5 kcal/mol and involves the proton transfer from the amide oxygen of protonated diglycine to the hydroxyl oxygen. Fragmentation initiated by proton transfer from the terminal nitrogen has also a comparable free energy of activation (39.4 kcal/mol). Proton transfer initiating the fragmentation, from the highly basic terminal nitrogen or amide oxygen to the less basic hydroxyl oxygen is feasible at energies reached in usual mass spectrometric experiments. Amide N-protonated diglycine structures are precursors of mainly y(1) ions rather than "b2" ions. In the lowest energy fragmentation channels, proton transfer to the hydroxylic oxygen, bond breaking and formation of an oxazolone ring occur concertedly but asynchronously. Proton transfer to hydroxyl oxygen and cleavage of the corresponding C-O bond take place at the early stages of the fragmentation step, while ring closure to form an oxazolone geometry occurs at the later stages of the transition. The experimentally observed low kinetic energy release is expected to be due to the existence of a strongly hydrogen bonded protonated oxazolone-water complex in the exit channel. Whereas the threshold energy for "b2" ion formation (37.1 kcal/mol) is lower than for the y(1) ion (38.4 kcal/mol), the former requires a tight transition state with an activation entropy, DeltaS++ = -1.2 cal/mol.K and the latter has a loose transition state with DeltaS++ = +8.8 cal/mol.K. This leads to y(1) being the major fragment ion over a wide energy range.


Assuntos
Glicilglicina/química , Água/química , Amidas/química , Dicetopiperazinas , Modelos Moleculares , Estrutura Molecular , Oxazolona/química , Oxigênio/química , Piperazinas/química , Prótons
5.
J Comput Chem ; 25(5): 690-703, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-14978712

RESUMO

The water-assisted tautomerization of glycine has been investigated at the B3LYP/6-31+G** level using supermolecules containing up to six water molecules as well as considering a 1:1 glycine-water complex embedded in a continuum. The conformations of the tautomers in this mechanism do not display an intramolecular H bond, instead the functional groups are bridged by a water molecule. The replacement of the intramolecular H bond by the bridging water reduces the polarity of the N-H bond in the zwitterion and increases that of the O-H bond in the neutral, stabilizing the zwitterion. Both the charge transfer effects and electrostatic interactions stabilize the nonintramolecularly H-bonded zwitterion conformer over the intramolecularly hydrogen bonded one. The nonintramolecularly H-bonded neutral is favored only by charge transfer effects. Although there is no strong evidence whether the intramolecularly hydrogen bonded or non hydrogen bonded structures are favored in the bulk solution represented as a dielectric continuum, it is likely that the latter species are more stable. The free energy of activation of the water-assisted mechanism is higher than the intramolecular proton transfer channel. However, when the presumably higher conformational energy of the zwitterion reacting in the intramolecular mechanism is taken into account, both mechanisms are observed to compete. The various conformers of the neutral glycine may form via multiple proton transfer reactions through several water molecules instead of a conformational rearrangement.


Assuntos
Glicina/química , Modelos Moleculares , Solventes/química , Algoritmos , Transferência de Energia , Ligação de Hidrogênio , Conformação Molecular , Prótons , Termodinâmica , Água/química
6.
J Comput Chem ; 24(14): 1789-802, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12964198

RESUMO

The relative stabilities of glycine tautomers involved in the intramolecular proton transfer are investigated computationally by considering glycine-water complexes containing up to five water molecules. The supermolecule results are compared with continuum calculations. Specific solute-solvent interactions and solvent induced changes in the solute wave function are considered using the natural bond orbitals (NBO) method. The stabilization of the zwitterion upon solvation is explained by the changes in the wave functions localized on the forming and breaking bonds as well as by the different interaction energies in the zwitterionic and neutral clusters. Only the neutral species exist in mono- and dihydrated clusters and in the gas phase. In the smaller clusters, zwitterions are mainly stabilized by conformational effects, whereas in larger clusters, in particular when glycine is solvated on both sides of its heavy atom backbone, polarization effects dominate the stability of a given tautomer. Generally, the strength of the solute-solvent interactions is governed by the intermolecular charge transfer interactions. As the solvation progresses, the hypothetical gaseous zwitterion is better solvated than the gaseous neutral, making zwitterion to neutral tautomerization progressively less exothermic for clusters containing up to three water molecules, and endothermic for larger clusters. The neutral isomer does not exist for some solvent arrangements with five water molecules. Only solvent arrangements in which water molecules do not interact with the reactive proton are considered. Hence, the experimentally observed double well potential energy surface may be due to such an interaction or to a different reaction mechanism.


Assuntos
Glicina/química , Modelos Moleculares , Solventes/química , Algoritmos , Transferência de Energia , Gases/química , Ligação de Hidrogênio , Prótons , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA