Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969858

RESUMO

Brain metastases are a leading cause of death in patients with breast cancer. The lack of clinical trials and the presence of the blood-brain barrier limit therapeutic options. Furthermore, overexpression of the human epidermal growth factor receptor 2 (HER2) increases the incidence of breast cancer brain metastases (BCBM). HER2-targeting agents, such as the monoclonal antibodies trastuzumab and pertuzumab, improved outcomes in patients with breast cancer and extracranial metastases. However, continued BCBM progression in breast cancer patients highlighted the need for novel and effective targeted therapies against intracranial metastases. In this study, we engineered the highly migratory and brain tumor tropic human neural stem cells (NSCs) LM008 to continuously secrete high amounts of functional, stable, full-length antibodies against HER2 (anti-HER2Ab) without compromising the stemness of LM008 cells. The secreted anti-HER2Ab impaired tumor cell proliferation in vitro in HER2+ BCBM cells by inhibiting the PI3K-Akt signaling pathway and resulted in a significant benefit when injected in intracranial xenograft models. In addition, dual HER2 blockade using anti-HER2Ab LM008 NSCs and the tyrosine kinase inhibitor tucatinib significantly improved the survival of mice in a clinically relevant model of multiple HER2+ BCBM. These findings provide compelling evidence for the use of HER2Ab-secreting LM008 NSCs in combination with tucatinib as a promising therapeutic regimen for patients with HER2+ BCBM.


Assuntos
Antineoplásicos Imunológicos/metabolismo , Neoplasias Encefálicas , Neoplasias Experimentais , Células-Tronco Neurais , Oxazóis/farmacologia , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2 , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Annu Rev Med ; 73: 279-292, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34665646

RESUMO

Faced with unique immunobiology and marked heterogeneity, treatment strategies for glioblastoma require therapeutic approaches that diverge from conventional oncological strategies. The selection and prioritization of targeted and immunotherapeutic strategies will need to carefully consider these features and companion biomarkers developed alongside treatment strategies to identify the appropriate patient populations. Novel clinical trial strategies that interrogate the tumor microenvironment for drug penetration and target engagement will inform go/no-go later-stage clinical studies. Innovative trial designs and analyses are needed to move effective agents toward regulatory approvals more rapidly.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Biomarcadores , Neoplasias Encefálicas/terapia , Glioblastoma/tratamento farmacológico , Humanos , Imunoterapia , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627401

RESUMO

Glioblastoma (GBM) is the most lethal primary brain tumor in adults. No treatment provides durable relief for the vast majority of GBM patients. In this study, we've tested a bispecific antibody comprised of single-chain variable fragments (scFvs) against T cell CD3ε and GBM cell interleukin 13 receptor alpha 2 (IL13Rα2). We demonstrate that this bispecific T cell engager (BiTE) (BiTELLON) engages peripheral and tumor-infiltrating lymphocytes harvested from patients' tumors and, in so doing, exerts anti-GBM activity ex vivo. The interaction of BiTELLON with T cells and IL13Rα2-expressing GBM cells stimulates T cell proliferation and the production of proinflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα). We have modified neural stem cells (NSCs) to produce and secrete the BiTELLON (NSCLLON). When injected intracranially in mice with a brain tumor, NSCLLON show tropism for tumor, secrete BiTELLON, and remain viable for over 7 d. When injected directly into the tumor, NSCLLON provide a significant survival benefit to mice bearing various IL13Rα2+ GBMs. Our results support further investigation and development of this therapeutic for clinical translation.


Assuntos
Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunomodulação , Ativação Linfocitária/imunologia , Células-Tronco Neurais/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Comunicação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Glioblastoma/patologia , Xenoenxertos , Humanos , Mediadores da Inflamação/metabolismo , Camundongos
4.
Proc Natl Acad Sci U S A ; 116(47): 23714-23723, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31712430

RESUMO

Tumor-associated myeloid cells (TAMCs) are key drivers of immunosuppression in the tumor microenvironment, which profoundly impedes the clinical response to immune-dependent and conventional therapeutic modalities. As a hallmark of glioblastoma (GBM), TAMCs are massively recruited to reach up to 50% of the brain tumor mass. Therefore, they have recently been recognized as an appealing therapeutic target to blunt immunosuppression in GBM with the hope of maximizing the clinical outcome of antitumor therapies. Here we report a nano-immunotherapy approach capable of actively targeting TAMCs in vivo. As we found that programmed death-ligand 1 (PD-L1) is highly expressed on glioma-associated TAMCs, we rationally designed a lipid nanoparticle (LNP) formulation surface-functionalized with an anti-PD-L1 therapeutic antibody (αPD-L1). We demonstrated that this system (αPD-L1-LNP) enabled effective and specific delivery of therapeutic payload to TAMCs. Specifically, encapsulation of dinaciclib, a cyclin-dependent kinase inhibitor, into PD-L1-targeted LNPs led to a robust depletion of TAMCs and an attenuation of their immunosuppressive functions. Importantly, the delivery efficiency of PD-L1-targeted LNPs was robustly enhanced in the context of radiation therapy (RT) owing to the RT-induced up-regulation of PD-L1 on glioma-infiltrating TAMCs. Accordingly, RT combined with our nano-immunotherapy led to dramatically extended survival of mice in 2 syngeneic glioma models, GL261 and CT2A. The high targeting efficiency of αPD-L1-LNP to human TAMCs from GBM patients further validated the clinical relevance. Thus, this study establishes a therapeutic approach with immense potential to improve the clinical response in the treatment of GBM and warrants a rapid translation into clinical practice.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células Mieloides/patologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Óxidos N-Cíclicos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Indolizinas , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/efeitos da radiação , Nanopartículas , Compostos de Piridínio/administração & dosagem , Compostos de Piridínio/uso terapêutico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Lancet Oncol ; 22(8): 1103-1114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214495

RESUMO

BACKGROUND: Malignant glioma is the most common and lethal primary brain tumour, with dismal survival rates and no effective treatment. We examined the safety and activity of NSC-CRAd-S-pk7, an engineered oncolytic adenovirus delivered by neural stem cells (NSCs), in patients with newly diagnosed high-grade glioma. METHODS: This was a first-in-human, open-label, phase 1, dose-escalation trial done to determine the maximal tolerated dose of NSC-CRAd-S-pk7, following a 3 + 3 design. Patients with newly diagnosed, histologically confirmed, high-grade gliomas (WHO grade III or IV) were recruited. After neurosurgical resection, NSC-CRAd-S-pk7 was injected into the walls of the resection cavity. The first patient cohort received a dose starting at 6·25 × 1010 viral particles administered by 5·00 × 107 NSCs, the second cohort a dose of 1·25 × 1011 viral particles administered by 1·00 × 108 NSCs, and the third cohort a dose of 1·875 × 1011 viral particles administered by 1·50 × 108 NSCs. No further dose escalation was planned. Within 10-14 days, treatment with temozolomide and radiotherapy was initiated. Primary endpoints were safety and toxicity profile and the maximum tolerated dose for a future phase 2 trial. All analyses were done in all patients who were included in the trial and received the study treatment and were not excluded from the study. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT03072134. FINDINGS: Between April 24, 2017, and Nov 13, 2019, 12 patients with newly diagnosed, malignant gliomas were recruited and included in the safety analysis. Histopathological evaluation identified 11 (92%) of 12 patients with glioblastoma and one (8%) of 12 patients with anaplastic astrocytoma. The median follow-up was 18 months (IQR 14-22). One patient receiving 1·50 × 108 NSCs loading 1·875 × 1011 viral particles developed viral meningitis (grade 3) due to the inadvertent injection of NSC-CRAd-S-pk7 into the lateral ventricle. Otherwise, treatment was safe as no formal dose-limiting toxicity was reached, so 1·50 × 108 NSCs loading 1·875 × 1011 viral particles was recommended as a phase 2 trial dose. There were no treatment-related deaths. The median progression-free survival was 9·1 months (95% CI 8·5-not reached) and median overall survival was 18·4 months (15·7-not reached). INTERPRETATION: NSC-CRAd-S-pk7 treatment was feasible and safe. Our immunological and histopathological findings support continued investigation of NSC-CRAd-S-pk7 in a phase 2/3 clinical trial. FUNDING: US National Institutes of Health.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Células-Tronco Neurais/transplante , Terapia Viral Oncolítica/métodos , Adenoviridae , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vírus Oncolíticos
6.
Angew Chem Int Ed Engl ; 60(24): 13405-13413, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755286

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by an aberrant metabolic phenotype with high metastatic capacity, resulting in poor patient prognoses and low survival rates. We designed a series of novel AuIII cyclometalated prodrugs of energy-disrupting Type II antidiabetic drugs namely, metformin and phenformin. Prodrug activation and release of the metformin ligand was achieved by tuning the cyclometalated AuIII fragment. The lead complex 3met was 6000-fold more cytotoxic compared to uncoordinated metformin and significantly reduced tumor burden in mice with aggressive breast cancers with lymphocytic infiltration into tumor tissues. These effects was ascribed to 3met interfering with energy production in TNBCs and inhibiting associated pro-survival responses to induce deadly metabolic catastrophe.


Assuntos
Antineoplásicos/metabolismo , Metformina/metabolismo , Pró-Fármacos/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Ouro/química , Humanos , Metformina/química , Camundongos , Conformação Molecular , Fenformin/química , Fenformin/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Proc Natl Acad Sci U S A ; 114(30): E6147-E6156, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696296

RESUMO

Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood-brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity.


Assuntos
Glioblastoma/patologia , Nanopartículas/uso terapêutico , Interferência de RNA , Animais , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Terapia Genética/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Neurooncol ; 142(2): 375-384, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30706176

RESUMO

PURPOSE: To study whether the clinical outcome and molecular biology of gliomas in African-American patients fundamentally differ from those occurring in Whites. METHODS: The clinical information and molecular profiles (including gene expression array, non-silent somatic mutation, DNA methylation and protein expression) were downloaded from The Cancer genome atlas (TCGA). Electronic medical records were abstracted from Northwestern Medicine Enterprise Data Warehouse (NMEDW) for analysis as well. Grade II-IV Glioma patients were all included. RESULTS: 931 Whites and 64 African-American glioma patients from TCGA were analyzed. African-American with Karnofsky performance score (KPS) ≥ 80 have significantly lower risk of death than similar white Grade IV Glioblastoma (GBM) patients [HR (95% CI) = 0.47 (0.23, 0.98), P = 0.0444, C-index = 0.68]. Therefore, we further compared gene expression profiles between African-American GBM patients and Whites with KPS ≥ 80. Extrapolation of genes significantly associated with increased African-American patient survival revealed a set of 13 genes with a possible role in this association, including elevated expression of genes previously identified as increased in African-American breast and colon cancer patients (e.g. CRYBB2). Furthermore, gene set enrichment analysis revealed retinoic acid (RA) metabolism as a pathway significantly upregulated in African-American GBM patients who survive longer than Whites (Z-score = - 2.10, Adjusted P-value = 0.0449). CONCLUSIONS: African Americans have prolonged survival with glioma which is influenced only by initial KPS score. Genes previously associated with both racial disparities in cancer and pathways associated with RA metabolism may play an important role in glioma etiology. In the future exploration of these genes and pathways may inform novel therapies for this incurable disease.


Assuntos
Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/genética , Glioma/epidemiologia , Glioma/genética , Tretinoína/metabolismo , Adulto , Negro ou Afro-Americano/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/terapia , Humanos , Avaliação de Estado de Karnofsky , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Análise de Sobrevida , Resultado do Tratamento , População Branca/genética
9.
Mol Ther ; 26(4): 986-995, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503195

RESUMO

In order to fully harness the potential of immunotherapy with chimeric antigen receptor (CAR)-modified T cells, pre-clinical studies must be conducted in immunocompetent animal models that closely mimic the immunosuppressive malignant glioma (MG) microenvironment. Thus, the goal of this project was to study the in vivo fate of T cells expressing CARs specific for the MG antigen IL13Rα2 (IL13Rα2-CARs) in immunocompetent MG models. Murine T cells expressing IL13Rα2-CARs with a CD28.ζ (IL13Rα2-CAR.CD28.ζ) or truncated signaling domain (IL13Rα2-CAR.Δ) were generated by retroviral transduction, and their effector function was evaluated both in vitro and in vivo. IL13Rα2-CAR.CD28.ζ T cells' specificity toward IL13Rα2 was confirmed through cytokine production and cytolytic activity. In vivo, a single intratumoral injection of IL13Rα2-CAR.CD28.ζ T cells significantly extended the survival of IL13Rα2-expressing GL261 and SMA560 glioma-bearing mice; long-term survivors were resistant to re-challenge with IL13Rα2-negative and IL13Rα2-positive tumors. IL13Rα2-CAR.CD28.ζ T cells proliferated, produced cytokines (IFNγ, TNF-α), and promoted a phenotypically pro-inflammatory glioma microenvironment by inducing a significant increase in the number of CD4+ and CD8+ T cells and CD8α+ dendritic cells and a decrease in Ly6G+ myeloid-derived suppressor cells (MDSCs). Our data underline the significance of CAR T cell studies in immunocompetent hosts and further validate IL13Rα2-CAR T cells as an efficacious therapeutic strategy for MG.


Assuntos
Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Imunoterapia Adotiva/métodos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Subunidade alfa2 de Receptor de Interleucina-13/antagonistas & inibidores , Masculino , Camundongos , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Immunol ; 195(1): 367-76, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26026061

RESUMO

Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001).


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/administração & dosagem , Linhagem da Célula/imunologia , Células Dendríticas/imunologia , Glioma/terapia , Imunidade Adaptativa , Animais , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/imunologia , Contagem de Células , Movimento Celular , Células Dendríticas/classificação , Células Dendríticas/patologia , Células Dendríticas/transplante , Glioma/imunologia , Glioma/mortalidade , Glioma/patologia , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Interferon-alfa/biossíntese , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/patologia , Ovalbumina/química , Ovalbumina/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Análise de Sobrevida , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th1/imunologia , Células Th1/patologia , Vacinação
11.
Mol Ther ; 24(2): 354-363, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26514825

RESUMO

Immunotherapy with T cells expressing chimeric antigen receptors (CARs) is an attractive approach to improve outcomes for patients with glioblastoma (GBM). IL13Rα2 is expressed at a high frequency in GBM but not in normal brain, making it a promising CAR T-cell therapy target. IL13Rα2-specific CARs generated up to date contain mutated forms of IL13 as an antigen-binding domain. While these CARs target IL13Rα2, they also recognize IL13Rα1, which is broadly expressed. To overcome this limitation, we constructed a panel of IL13Rα2-specific CARs that contain the IL13Rα2-specific single-chain variable fragment (scFv) 47 as an antigen binding domain, short or long spacer regions, a transmembrane domain, and endodomains derived from costimulatory molecules and CD3.ζ (IL13Rα2-CARs). IL13Rα2-CAR T cells recognized IL13Rα2-positive target cells in coculture and cytotoxicity assays with no cross-reactivity to IL13Rα1. However, only IL13Rα2-CAR T cells with a short spacer region produced IL2 in an antigen-dependent fashion. In vivo, T cells expressing IL13Rα2-CARs with short spacer regions and CD28.ζ, 41BB.ζ, and CD28.OX40.ζ endodomains had potent anti-glioma activity conferring a significant survival advantage in comparison to mice that received control T cells. Thus, IL13Rα2-CAR T cells hold the promise to improve current IL13Rα2-targeted immunotherapy approaches for GBM and other IL13Rα2-positive malignancies.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Animais , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Glioblastoma/imunologia , Humanos , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Camundongos , Anticorpos de Cadeia Única/uso terapêutico , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Graefes Arch Clin Exp Ophthalmol ; 255(8): 1581-1592, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28523456

RESUMO

PURPOSE: Ischemia-associated retinal degeneration is one of the leading causes of vision loss, and to date, there are no effective treatment options. We hypothesized that delayed injection of bone-marrow stem cells (BMSCs) 24 h after the onset of ischemia could effectively rescue ischemic retina from its consequences, including apoptosis, inflammation, and increased vascular permeability, thereby preventing retinal cell loss. METHODS: Retinal ischemia was induced in adult Wistar rats by increasing intraocular pressure (IOP) to 130-135 mmHg for 55 min. BMSCs harvested from rat femur were injected into the vitreous 24 h post-ischemia. Functional recovery was assessed 7 days later using electroretinography (ERG) measurements of the a-wave, b-wave, P2, scotopic threshold response (STR), and oscillatory potentials (OP). The retinal injury and anti-ischemic effects of BMSCs were quantitated by measuring apoptosis, autophagy, inflammatory markers, and retinal-blood barrier permeability. The distribution and fate of BMSC were qualitatively examined using real-time fundus imaging, and retinal flat mounts. RESULTS: Intravitreal delivery of BMSCs significantly improved recovery of the ERG a- and b-waves, OP, negative STR, and P2, and attenuated apoptosis as evidenced by decreased TUNEL and caspase-3 protein levels. BMSCs significantly increased autophagy, decreased inflammatory mediators (TNF-α, IL-1ß, IL-6), and diminished retinal vascular permeability. BMSCs persisted in the vitreous and were also found within ischemic retina. CONCLUSIONS: Taken together, our results indicate that intravitreal injection of BMSCs rescued the retina from ischemic damage in a rat model. The mechanisms include suppression of apoptosis, attenuation of inflammation and vascular permeability, and preservation of autophagy.


Assuntos
Células da Medula Óssea/citologia , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Degeneração Retiniana/terapia , Vasos Retinianos/patologia , Animais , Apoptose , Barreira Hematorretiniana , Permeabilidade Capilar , Modelos Animais de Doenças , Eletrorretinografia , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Isquemia/diagnóstico , Isquemia/metabolismo , Masculino , Ratos , Ratos Wistar , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/fisiopatologia
13.
Stem Cells ; 33(10): 2985-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260958

RESUMO

The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation.


Assuntos
Anticorpos Anti-Idiotípicos/biossíntese , Neoplasias Encefálicas/terapia , Neoplasias da Mama/tratamento farmacológico , Células-Tronco Neurais/metabolismo , Receptor ErbB-2/biossíntese , Animais , Anticorpos Anti-Idiotípicos/imunologia , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/transplante , Receptor ErbB-2/imunologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Ther ; 22(1): 140-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24002694

RESUMO

Treatment options of glioblastoma multiforme are limited due to the blood-brain barrier (BBB). In this study, we investigated the utility of intranasal (IN) delivery as a means of transporting stem cell-based antiglioma therapeutics. We hypothesized that mesenchymal stem cells (MSCs) delivered via nasal application could impart therapeutic efficacy when expressing TNF-related apoptosis-inducing ligand (TRAIL) in a model of human glioma. ¹¹¹In-oxine, histology and magnetic resonance imaging (MRI) were utilized to track MSCs within the brain and associated tumor. We demonstrate that MSCs can penetrate the brain from nasal cavity and infiltrate intracranial glioma xenografts in a mouse model. Furthermore, irradiation of tumor-bearing mice tripled the penetration of (¹¹¹In)-oxine-labeled MSCs in the brain with a fivefold increase in cerebellum. Significant increase in CXCL12 expression was observed in irradiated xenograft tissue, implicating a CXCL12-dependent mechanism of MSCs migration towards irradiated glioma xenografts. Finally, MSCs expressing TRAIL improved the median survival of irradiated mice bearing intracranial U87 glioma xenografts in comparison with nonirradiated and irradiated control mice. Cumulatively, our data suggest that IN delivery of stem cell-based therapeutics is a feasible and highly efficacious treatment modality, allowing for repeated application of modified stem cells to target malignant glioma.


Assuntos
Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Rastreamento de Células , Quimiocina CXCL12/genética , Modelos Animais de Doenças , Raios gama , Expressão Gênica , Glioma/mortalidade , Glioma/patologia , Glioma/terapia , Humanos , Imageamento por Ressonância Magnética , Camundongos , Compostos Organometálicos , Oxiquinolina/análogos & derivados , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Proc Natl Acad Sci U S A ; 109(29): 11570-5, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753519

RESUMO

Monoclonal antibodies can specifically bind or even inhibit drug targets and have hence become the fastest growing class of human therapeutics. Although they can be screened for binding affinities at very high throughput using systems such as phage display, screening for functional properties (e.g., the inhibition of a drug target) is much more challenging. Typically these screens require the generation of immortalized hybridoma cells, as well as clonal expansion in microtiter plates over several weeks, and the number of clones that can be assayed is typically no more than a few thousand. We present here a microfluidic platform allowing the functional screening of up to 300,000 individual hybridoma cell clones within less than a day. This approach should also be applicable to nonimmortalized primary B-cells, as no cell proliferation is required: Individual cells are encapsulated into aqueous microdroplets and assayed directly for the release of antibodies inhibiting a drug target based on fluorescence. We used this system to perform a model screen for antibodies that inhibit angiotensin converting enzyme 1, a target for hypertension and congestive heart failure drugs. When cells expressing these antibodies were spiked into an unrelated hybridoma cell population in a ratio of 1:10,000 we observed a 9,400-fold enrichment after fluorescence activated droplet sorting. A wide variance in antibody expression levels at the single-cell level within a single hybridoma line was observed and high expressors could be successfully sorted and recultivated.


Assuntos
Anticorpos Monoclonais/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Hibridomas/metabolismo , Microfluídica/métodos , Afinidade de Anticorpos/fisiologia , Linfócitos B/metabolismo , Fluorescência , Peptidil Dipeptidase A/metabolismo
16.
Ann Case Rep ; 9(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606301

RESUMO

Immunoglobulin G4-related disease (IgG4-RD) is a rare autoimmune disorder with an unknown etiology. Using orthogonal immune profiling and automated sequential multiplexing, we found an enhanced frequency of activated circulating B cells, antigen-presenting myeloid cells in peripheral blood, and a distinct distribution of immune cells within the CNS lesions. Prohibitin-expressing CD138+ plasma B cells and CD11c+ dendritic cells have been found interacting with T cells resulting in irmnune cell activation within the lesion. The data implicate prohibitin as a potential triggering antigen in the pathogenesis of IgG4-RD and shed light on the cellular dynamics and interactions driving IgG4-RD in the central nervous system, emphasizing the need for further studies corroborating these findings.

17.
ACS Nano ; 18(22): 13983-13999, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767983

RESUMO

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.


Assuntos
Nanomedicina , Humanos , Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , Estados Unidos
18.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941297

RESUMO

STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.


Assuntos
Glioblastoma , Proteínas de Membrana , Microambiente Tumoral , Animais , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Microambiente Tumoral/imunologia , Camundongos , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/agonistas , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética
19.
J Biol Chem ; 287(36): 30215-27, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22778273

RESUMO

The high affinity interleukin-13 receptor α2 (IL13Rα2) is selectively expressed at a high frequency by glioblastoma multiforme (GBM) as well as several other tumor types. One approach for targeting this tumor-specific receptor utilizes the cognate ligand, IL-13, conjugated to cytotoxic molecules. However, this approach lacks specificity because the lower affinity receptor for IL-13, IL13Rα1, is widely expressed by normal tissues. Here, we aimed to develop and characterize a novel monoclonal antibody (mAb) specific to IL13Rα2 for the therapeutic purpose of targeting IL13Rα2-expressing tumors. Hybridoma cell lines were generated and compared for binding affinities to recombinant human IL13Rα2 (rhIL13Rα2). Clone 47 demonstrated binding to the native conformation of IL13Rα2 and was therefore chosen for further studies. Clone 47 bound specifically and with high affinity (K(D) = 1.39 × 10(-9) M) to rhIL13Rα2 but not to rhIL13Rα1 or murine IL13Rα2. Furthermore, clone 47 specifically recognized wild-type IL13Rα2 expressed on the surface of CHO and HEK cells as well as several glioma cell lines. Competitive binding assays revealed that clone 47 also significantly inhibited the interaction between human soluble IL-13 and IL13Rα2 receptor. Moreover, we found that N-linked glycosylation of IL13Rα2 contributes in part to the interaction of the antibody to IL13Rα2. In vivo, the IL13Rα2 mAb improved the survival of nude mice intracranially implanted with a human U251 glioma xenograft. Collectively, these data warrant further investigation of this novel IL13Rα2 mAb with an emphasis on translational implications for therapeutic use.


Assuntos
Anticorpos Monoclonais Murinos , Anticorpos Antineoplásicos , Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Afinidade de Anticorpos/imunologia , Células CHO , Cricetinae , Cricetulus , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Glioblastoma/patologia , Glicosilação , Células HEK293 , Humanos , Hibridomas , Subunidade alfa2 de Receptor de Interleucina-13/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Transplante Heterólogo
20.
Trends Mol Med ; 29(4): 282-296, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805210

RESUMO

Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Técnicas de Cultura de Células , Organoides/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA