RESUMO
A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant ^{235}U and ^{239}Pu isotopes and improves the uncertainty of the ^{235}U spectral shape to about 3%. The ^{235}U and ^{239}Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the ^{235}U and ^{239}Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.
RESUMO
The PROSPECT and STEREO collaborations present a combined measurement of the pure ^{235}U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with χ^{2}/ndf=24.1/21, allowing a joint unfolding of the prompt energy measurements into antineutrino energy. This ν[over ¯]_{e} energy spectrum is provided to the community, and an excess of events relative to the Huber model is found in the 5-6 MeV region. When a Gaussian bump is fitted to the excess, the data-model χ^{2} value is improved, corresponding to a 2.4σ significance.
RESUMO
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{µe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}.
RESUMO
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
RESUMO
This Letter reports the first extraction of individual antineutrino spectra from ^{235}U and ^{239}Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses 3.5×10^{6} inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, ^{235}U and ^{239}Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4-6 MeV, a 7% (9%) excess of events is observed for the ^{235}U (^{239}Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is 4.0σ for ^{235}U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at 5.3σ. In the energy range of 4-6 MeV, a maximal local discrepancy of 6.3σ is observed.
RESUMO
We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor ν[over ¯]_{e} inverse ß decay candidates observed over 1958 days of data collection. The installation of a flash analog-to-digital converter readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic ^{9}Li and ^{8}He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative ν[over ¯]_{e} rates and energy spectra among detectors yields sin^{2}2θ_{13}=0.0856±0.0029 and Δm_{32}^{2}=(2.471_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the normal hierarchy, and Δm_{32}^{2}=-(2.575_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the inverted hierarchy.
RESUMO
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of ^{235}U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton ^{6}Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 m water equivalent overburden. Data collected during 33 live days of reactor operation at a nominal power of 85 MW yield a detection of 25 461±283 (stat) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5σ statistical significance within 2 h of on-surface reactor-on data taking. A reactor model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the reactor antineutrino anomaly at 2.2σ confidence level.
RESUMO
The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43} cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43} cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43} cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.
RESUMO
This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2×10^{-4}â²|Δm_{41}^{2}|â²0.3 eV^{2} mass range. The resulting limits on sin^{2}2θ_{14} are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δm_{41}^{2}|â²0.2 eV^{2} region.
RESUMO
Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^{2}2θ_{µe} are set over 6 orders of magnitude in the sterile mass-squared splitting Δm_{41}^{2}. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm_{41}^{2}<0.8 eV^{2} at 95% CL_{s}.
RESUMO
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse ß decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to â¼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
RESUMO
We report a measurement of the time-dependent CP asymmetry of B[over ¯]^{0}âD_{CP}^{(*)}h^{0} decays, where the light neutral hadron h^{0} is a π^{0}, η, or ω meson, and the neutral D meson is reconstructed in the CP eigenstates K^{+}K^{-}, K_{S}^{0}π^{0}, or K_{S}^{0}ω. The measurement is performed combining the final data samples collected at the Ï(4S) resonance by the BABAR and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×10^{6} BB[over ¯] pairs recorded by the BABAR detector and (772±11)×10^{6} BB[over ¯] pairs recorded by the Belle detector. We measure the CP asymmetry parameters -η_{f}S=+0.66±0.10(stat)±0.06(syst) and C=-0.02±0.07(stat)±0.03(syst). These results correspond to the first observation of CP violation in B[over ¯]^{0}âD_{CP}^{(*)}h^{0} decays. The hypothesis of no mixing-induced CP violation is excluded in these decays at the level of 5.4 standard deviations.
RESUMO
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th} ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^{2}2θ_{13}=0.084±0.005 and |Δm_{ee}^{2}|=(2.42±0.11)×10^{-3} eV^{2} in the three-neutrino framework.
RESUMO
A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2)<|Δm(41)(2) |< 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2θ(14) cover the 10(-3) eV(2) â² |Δm(41)(2)| â² 0.1 eV(2) region, which was largely unexplored.
RESUMO
A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported. Electron antineutrinos (ν¯(e)) from six 2.9 GW(th) reactors were detected with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41 589 (203 809 and 92 912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude sin(2)2θ(13)=0.090(-0.009)(+0.008) and the first direct measurement of the ν¯(e) mass-squared difference |Δm(ee)2|=(2.59(-0.20)(+0.19))×10(-3) eV2 is obtained using the observed ν¯(e) rates and energy spectra in a three-neutrino framework. This value of |Δm(ee)2| is consistent with |Δm(µµ)2| measured by muon neutrino disappearance, supporting the three-flavor oscillation model.
RESUMO
The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GWth-day live-time exposure in 55 days, 10,416 (80,376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940±0.011(stat.)±0.004(syst.). A rate-only analysis finds sin(2)2θ(13)=0.092±0.016(stat.)±0.005(syst.) in a three-neutrino framework.
RESUMO
The T cell receptor repertoire has a potential for vast diversity. However, this diversity is limited by the fact that the majority of thymocytes die as the repertoire is shaped by positive and negative selection events during development. Such thymic selection affecting TCR V beta gene segment usage has been demonstrated in the mouse. However, similar data has not been forthcoming in man, and little is known about the role of the TCR alpha chain in antigen/major histocompatibility complex (MHC) recognition in any species. Here, we used a monoclonal antibody recognizing the TCR V alpha 12.1 gene product to assess the expression of this gene in the peripheral blood of man. In most individuals tested, the percentage of cells expressing V alpha 12.1 was significantly higher in CD8+ T cells than in CD4+ T cells. That the V alpha gene product itself was responsible for this increased expression in CD8+ T cells was underscored by the lack of substantial skewing of V beta usage in the V alpha 12.1-bearing T cells. Moreover, the skewed expression of V alpha 12.1 was already present at birth, indicating that it was likely to be due to a developmental process rather than the result of exposure to environmental antigens. Based on the established role for CD8 in binding to class I MHC molecules, we suggest that increased expression of V alpha 12.1 on CD8+ T cells points to a role for TCR's using V alpha 12.1 in class I MHC/Ag recognition. These results indicate that V alpha gene usage in the peripheral blood of man is not random, and they support a role for V alpha as a participant in the self-MHC recognition process that shapes the TCR repertoire.
Assuntos
Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Subpopulações de Linfócitos T/fisiologia , Anticorpos Monoclonais/imunologia , Antígenos de Diferenciação de Linfócitos T/análise , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8 , Diferenciação Celular , Citometria de Fluxo , Expressão Gênica , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Humanos , Dados de Sequência Molecular , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta , Timo/citologiaRESUMO
We have described in this paper a novel human interferon (IFN) with antigenic and cross-species reactivity of alpha-IFN and physicochemical properties of gamma-IFN. This IFN is produced by normal peripheral blood mononuclear cells during an immune response but has also been associated with autoimmune disease (10). The system described here will be useful in elucidating the biological significance and cell of origin of this IFN.
Assuntos
Interferon Tipo I/biossíntese , Linfócitos/imunologia , Animais , Bovinos , Concanavalina A/farmacologia , Reações Cruzadas , Haplorrinos , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Ativação LinfocitáriaRESUMO
T cells bearing gamma/delta antigen receptors comprise a resident population of intraepithelial lymphocytes in organs such as skin, gut, and lungs, where they are strategically located to contribute to the initial defense against infection. An important unsolved question about antigen-driven gamma/delta T cell responses regards the breadth of their T cell receptor (TCR) repertoire, since many specific epithelial compartments in mice display limited diversity. We have examined the diversity of TCR delta gene expression among human gamma/delta T cells from skin lesions induced by intradermal challenge with Mycobacterium leprae. We show that the vast majority of gamma/delta cells from M. leprae lesions use either V delta 1-J delta 1 or V delta 2-J delta 1 gene rearrangements and, within a given region of the lesion, display limited junctional diversity. This contrasts markedly with the extensive diversity of gamma/delta T cells from peripheral blood of these same individuals, as well as skin from normal donors. These results indicate that the gamma/delta response to M. leprae involves the selection of a limited number of clones from among a diverse repertoire, probably in response to specific mycobacterial and/or host antigens.
Assuntos
Receptores de Antígenos de Linfócitos T/fisiologia , Subpopulações de Linfócitos T/imunologia , Sequência de Aminoácidos , Sequência de Bases , Células Clonais , Rearranjo Gênico do Linfócito T , Rearranjo Gênico da Cadeia gama dos Receptores de Antígenos dos Linfócitos T , Humanos , Antígeno de Mitsuda/imunologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T gama-delta , Pele/imunologia , Testes Cutâneos , Subpopulações de Linfócitos T/citologiaRESUMO
The germline repertoire of variable genes for the TCR-gamma/delta is limited. This, together with the availability of several V delta-specific and a C delta-specific mAbs, has made it possible to assess differences in the TCR-gamma/delta repertoire in man. TCR-gamma/delta cells expressing particular V gene segments have been previously shown to be localized in different anatomical sites. In this study, analysis of TCR-gamma/delta V gene segment usage performed on subjects from the time of birth through adulthood revealed striking age-related changes in the TCR-gamma/delta repertoire in peripheral blood. V delta 1+ gamma/delta T cells predominated in thymus as well as in peripheral blood at birth and then persisted as a relatively constant proportion of CD3+ PBL. However, V delta 2+ gamma/delta T cells that constitute a small proportion of the CD3+ cells in thymus and in peripheral blood at birth, then expand and account for the major population of gamma/delta T cells in PBL in adults. No parallel postnatal expansion of V delta 2+ cells in the thymus was observed, even when paired thymus-peripheral blood specimens were obtained on subjects between the ages of 3 d and 8 yr. The subset of V delta 2+ lymphocytes that was expanded in peripheral blood expressed high levels of CD45RO suggesting prior activation of these cells, consistent with the possibility that their expansion might have resulted from exposure to foreign antigens or superantigens. In contrast, V delta 1+ T cells in PBL showed no comparable increase in relative numbers and were either negative or expressed only low levels of CD45RO. Consistent with evidence for extrathymic peripheral expansion of selective TCR-gamma/delta subsets, no link between MHC haplotype and differences in the TCR-gamma/delta V gene usage between individuals was apparent, and identical twins displayed TCR-gamma/delta variable gene segment phenotypes that were strikingly different from one another. The elements that determine the TCR-gamma/delta repertoire in individuals are not known. It is possible that both thymic selection and extrathymic factors may influence the peripheral repertoire. Recently, TCR-gamma/delta+ lymphocytes have been shown to expand markedly in peripheral lymphoid tissues and infectious lesions in response to mycobacterial antigens, and a correlation between mycobacterial responses and TCR-gamma/delta V gene usage has been shown in mice. The data presented here demonstrated peripheral age-related changes in the gamma/delta repertoire and point to the importance of extrathymic expansion of specific gamma/delta subsets in generating the human TCR-gamma/delta repertoire.