Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Acta Neuropathol ; 134(5): 705-714, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28733933

RESUMO

Posterior fossa ependymomas (EPN_PF) in children comprise two morphologically identical, but biologically distinct tumor entities. Group-A (EPN_PFA) tumors have a poor prognosis and require intensive therapy. In contrast, group-B tumors (EPN_PFB) exhibit excellent prognosis and the current consensus opinion recommends future clinical trials to test the possibility of treatment de-escalation in these patients. Therefore, distinguishing these two tumor subtypes is critical. EPN_PFA and EPN_PFB can be distinguished based on DNA methylation signatures, but these assays are not routinely available. We have previously shown that a subset of poorly prognostic childhood EPN_PF exhibits global reduction in H3K27me3. Therefore, we set out to determine whether a simple immunohistochemical assay for H3K27me3 could be used to segregate EPN_PFA from EPN_PFB tumors. We assembled a cohort of 230 childhood ependymomas and H3K27me3 immunohistochemistry was assessed as positive or negative in a blinded manner. H3K27me3 staining results were compared with DNA methylation-based subgroup information available in 112 samples [EPN_PFA (n = 72) and EPN_PFB tumors (n = 40)]. H3K27me3 staining was globally reduced in EPN_PFA tumors and immunohistochemistry showed 99% sensitivity and 100% specificity in segregating EPN_PFA from EPN_PFB tumors. Moreover, H3K27me3 immunostaining was sufficient to delineate patients with worse prognosis in two independent, non-overlapping cohorts (n = 133 and n = 97). In conclusion, immunohistochemical evaluation of H3K27me3 global reduction is an economic, easily available and readily adaptable method for defining high-risk EPN_PFA from low-risk posterior fossa EPN_PFB tumors to inform prognosis and to enable the design of future clinical trials.


Assuntos
Ependimoma/metabolismo , Neoplasias Infratentoriais/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Criança , Pré-Escolar , Intervalo Livre de Doença , Ependimoma/mortalidade , Ependimoma/patologia , Feminino , Humanos , Lactente , Neoplasias Infratentoriais/mortalidade , Neoplasias Infratentoriais/patologia , Masculino , Prognóstico , Sistema de Registros , Taxa de Sobrevida
3.
Cancer Cell ; 38(3): 334-349.e9, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795401

RESUMO

H3K27M diffuse intrinsic pontine gliomas (DIPGs) are fatal and lack treatments. They mainly harbor H3.3K27M mutations resulting in H3K27me3 reduction. Integrated analysis in H3.3K27M cells, tumors, and in vivo imaging in patients showed enhanced glycolysis, glutaminolysis, and tricarboxylic acid cycle metabolism with high alpha-ketoglutarate (α-KG) production. Glucose and/or glutamine-derived α-KG maintained low H3K27me3 in H3.3K27M cells, and inhibition of key enzymes in glycolysis or glutaminolysis increased H3K27me3, altered chromatin accessibility, and prolonged survival in animal models. Previous studies have shown that mutant isocitrate-dehydrogenase (mIDH)1/2 glioma cells convert α-KG to D-2-hydroxyglutarate (D-2HG) to increase H3K27me3. Here, we show that H3K27M and IDH1 mutations are mutually exclusive and experimentally synthetic lethal. Overall, we demonstrate that H3.3K27M and mIDH1 hijack a conserved and critical metabolic pathway in opposing ways to maintain their preferred epigenetic state. Consequently, interruption of this metabolic/epigenetic pathway showed potent efficacy in preclinical models, suggesting key therapeutic targets for much needed treatments.


Assuntos
Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/genética , Epigenômica/métodos , Histonas/genética , Mutação , Animais , Neoplasias do Tronco Encefálico/metabolismo , Linhagem Celular Tumoral , Glioma Pontino Intrínseco Difuso/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA