Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(2): 372-384.e12, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942920

RESUMO

MiRNAs are regulatory molecules that can be packaged into exosomes and secreted from cells. Here, we show that adipose tissue macrophages (ATMs) in obese mice secrete miRNA-containing exosomes (Exos), which cause glucose intolerance and insulin resistance when administered to lean mice. Conversely, ATM Exos obtained from lean mice improve glucose tolerance and insulin sensitivity when administered to obese recipients. miR-155 is one of the miRNAs overexpressed in obese ATM Exos, and earlier studies have shown that PPARγ is a miR-155 target. Our results show that miR-155KO animals are insulin sensitive and glucose tolerant compared to controls. Furthermore, transplantation of WT bone marrow into miR-155KO mice mitigated this phenotype. Taken together, these studies show that ATMs secrete exosomes containing miRNA cargo. These miRNAs can be transferred to insulin target cell types through mechanisms of paracrine or endocrine regulation with robust effects on cellular insulin action, in vivo insulin sensitivity, and overall glucose homeostasis.


Assuntos
Tecido Adiposo/citologia , Resistência à Insulina , Macrófagos/metabolismo , MicroRNAs/metabolismo , Adipócitos/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais
2.
Cell ; 155(1): 200-214, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074869

RESUMO

Macrophage-mediated inflammation is a major contributor to obesity-associated insulin resistance. The corepressor NCoR interacts with inflammatory pathway genes in macrophages, suggesting that its removal would result in increased activity of inflammatory responses. Surprisingly, we find that macrophage-specific deletion of NCoR instead results in an anti-inflammatory phenotype along with robust systemic insulin sensitization in obese mice. We present evidence that derepression of LXRs contributes to this paradoxical anti-inflammatory phenotype by causing increased expression of genes that direct biosynthesis of palmitoleic acid and ω3 fatty acids. Remarkably, the increased ω3 fatty acid levels primarily inhibit NF-κB-dependent inflammatory responses by uncoupling NF-κB binding and enhancer/promoter histone acetylation from subsequent steps required for proinflammatory gene activation. This provides a mechanism for the in vivo anti-inflammatory insulin-sensitive phenotype observed in mice with macrophage-specific deletion of NCoR. Therapeutic methods to harness this mechanism could lead to a new approach to insulin-sensitizing therapies.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Receptores Nucleares Órfãos/genética , Animais , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genética
3.
Cell ; 147(4): 815-26, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22078880

RESUMO

Insulin resistance, tissue inflammation, and adipose tissue dysfunction are features of obesity and Type 2 diabetes. We generated adipocyte-specific Nuclear Receptor Corepressor (NCoR) knockout (AKO) mice to investigate the function of NCoR in adipocyte biology, glucose and insulin homeostasis. Despite increased obesity, glucose tolerance was improved in AKO mice, and clamp studies demonstrated enhanced insulin sensitivity in liver, muscle, and fat. Adipose tissue macrophage infiltration and inflammation were also decreased. PPARγ response genes were upregulated in adipose tissue from AKO mice and CDK5-mediated PPARγ ser-273 phosphorylation was reduced, creating a constitutively active PPARγ state. This identifies NCoR as an adaptor protein that enhances the ability of CDK5 to associate with and phosphorylate PPARγ. The dominant function of adipocyte NCoR is to transrepress PPARγ and promote PPARγ ser-273 phosphorylation, such that NCoR deletion leads to adipogenesis, reduced inflammation, and enhanced systemic insulin sensitivity, phenocopying the TZD-treated state.


Assuntos
Adipócitos/metabolismo , Proteínas Correpressoras/genética , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Correpressor 1 de Receptor Nuclear/metabolismo , PPAR gama/metabolismo , Animais , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/antagonistas & inibidores , Fosforilação , Tiazolidinedionas
4.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442187

RESUMO

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Assuntos
Pulmão , Transcriptoma , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Recém-Nascido , Lactente , Criança , Pré-Escolar , Masculino , Feminino , Análise de Sequência de RNA/métodos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
5.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L419-L433, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489262

RESUMO

Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.


Assuntos
Displasia Broncopulmonar , Pré-Escolar , Recém-Nascido , Humanos , Criança , Displasia Broncopulmonar/patologia , Imuno-Histoquímica , Proteoma , Proteômica , Pulmão/metabolismo
6.
Am J Respir Crit Care Med ; 205(2): 208-218, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752721

RESUMO

Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. Methods: We performed proteomics analysis of human lungs at 10 distinct times from birth to 8 years to identify the molecular networks mediating postnatal lung maturation. Measurements and Main Results: We identified 8,938 proteins providing a comprehensive view of the developing human lung proteome. The analysis of the data supports the existence of distinct molecular substages of alveolar development and predicted the age of independent human lung samples, and extensive remodeling of the lung proteome occurred during postnatal development. Evidence of post-transcriptional control was identified in early postnatal development. An extensive extracellular matrix remodeling was supported by changes in the proteome during alveologenesis. The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteômica
7.
Gastroenterology ; 160(3): 863-874, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152356

RESUMO

BACKGROUND & AIMS: Liver CRIg+ (complement receptor of the immunoglobulin superfamily) macrophages play a critical role in filtering bacteria and their products from circulation. Translocation of microbiota-derived products from an impaired gut barrier contributes to the development of obesity-associated tissue inflammation and insulin resistance. However, the critical role of CRIg+ macrophages in clearing microbiota-derived products from the bloodstream in the context of obesity is largely unknown. METHODS: We performed studies with CRIg-/-, C3-/-, cGAS-/-, and their wild-type littermate mice. The CRIg+ macrophage population and bacterial DNA abundance were examined in both mouse and human liver by either flow cytometric or immunohistochemistry analysis. Gut microbial DNA-containing extracellular vesicles (mEVs) were adoptively transferred into CRIg-/-, C3-/-, or wild-type mice, and tissue inflammation and insulin sensitivity were measured in these mice. After coculture with gut mEVs, cellular insulin responses and cGAS/STING-mediated inflammatory responses were evaluated. RESULTS: Gut mEVs can reach metabolic tissues in obesity. Liver CRIg+ macrophages efficiently clear mEVs from the bloodstream through a C3-dependent opsonization mechanism, whereas obesity elicits a marked reduction in the CRIg+ macrophage population. Depletion of CRIg+ cells results in the spread of mEVs into distant metabolic tissues, subsequently exacerbating tissue inflammation and metabolic disorders. Additionally, in vitro treatment of obese mEVs directly triggers inflammation and insulin resistance of insulin target cells. Depletion of microbial DNA blunts the pathogenic effects of intestinal EVs. Furthermore, the cGAS/STING pathway is crucial for microbial DNA-mediated inflammatory responses. CONCLUSIONS: Deficiency of CRIg+ macrophages and leakage of intestinal EVs containing microbial DNA contribute to the development of obesity-associated tissue inflammation and metabolic diseases.


Assuntos
Microbioma Gastrointestinal/imunologia , Hepatite/imunologia , Resistência à Insulina/imunologia , Células de Kupffer/imunologia , Obesidade/complicações , Animais , Complemento C3/genética , DNA Bacteriano/imunologia , DNA Bacteriano/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/genética , Hepatite/microbiologia , Hepatite/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células de Kupffer/metabolismo , Fígado/citologia , Fígado/imunologia , Fígado/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Nucleotidiltransferases/metabolismo , Obesidade/sangue , Obesidade/imunologia , Receptores de Complemento/metabolismo , Transdução de Sinais/imunologia
8.
Pediatr Res ; 87(3): 511-517, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30776794

RESUMO

BACKGROUND: Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS: We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS: PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION: Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.


Assuntos
Separação Celular , Células Epiteliais/fisiologia , Pulmão/citologia , Doadores de Tecidos , Fatores Etários , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Queratina-5/genética , Queratina-5/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Fenótipo , Cultura Primária de Células , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , RNA-Seq , Análise de Célula Única
9.
BMC Bioinformatics ; 20(1): 185, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987598

RESUMO

BACKGROUND: For many practical hypothesis testing (H-T) applications, the data are correlated and/or with heterogeneous variance structure. The regression t-test for weighted linear mixed-effects regression (LMER) is a legitimate choice because it accounts for complex covariance structure; however, high computational costs and occasional convergence issues make it impractical for analyzing high-throughput data. In this paper, we propose computationally efficient parametric and semiparametric tests based on a set of specialized matrix techniques dubbed as the PB-transformation. The PB-transformation has two advantages: 1. The PB-transformed data will have a scalar variance-covariance matrix. 2. The original H-T problem will be reduced to an equivalent one-sample H-T problem. The transformed problem can then be approached by either the one-sample Student's t-test or Wilcoxon signed rank test. RESULTS: In simulation studies, the proposed methods outperform commonly used alternative methods under both normal and double exponential distributions. In particular, the PB-transformed t-test produces notably better results than the weighted LMER test, especially in the high correlation case, using only a small fraction of computational cost (3 versus 933 s). We apply these two methods to a set of RNA-seq gene expression data collected in a breast cancer study. Pathway analyses show that the PB-transformed t-test reveals more biologically relevant findings in relation to breast cancer than the weighted LMER test. CONCLUSIONS: As fast and numerically stable replacements for the weighted LMER test, the PB-transformed tests are especially suitable for "messy" high-throughput data that include both independent and matched/repeated samples. By using our method, the practitioners no longer have to choose between using partial data (applying paired tests to only the matched samples) or ignoring the correlation in the data (applying two sample tests to data with some correlated samples). Our method is implemented as an R package 'PBtest' and is available at https://github.com/yunzhang813/PBtest-R-Package .


Assuntos
Neoplasias da Mama/genética , Simulação por Computador , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Genéticos , Curva ROC , Análise de Regressão
10.
Cell Tissue Res ; 376(1): 51-70, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30467710

RESUMO

We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 µM) and PACAP (0.1 µM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 µM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.


Assuntos
Catecolaminas/metabolismo , Cromogranina A/fisiologia , Cromograninas/metabolismo , Nicotina/farmacologia , Fragmentos de Peptídeos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Cromogranina A/farmacologia , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Humanos , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Peptídeos/farmacologia , Ratos , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L576-L583, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975103

RESUMO

Human lung morphogenesis begins by embryonic life and continues after birth into early childhood to form a complex organ with numerous morphologically and functionally distinct cell types. Pulmonary organogenesis involves dynamic changes in cell proliferation, differentiation, and migration of specialized cells derived from diverse embryonic lineages. Studying the molecular and cellular processes underlying formation of the fully functional lung requires isolating distinct pulmonary cell populations during development. We now report novel methods to isolate four major pulmonary cell populations from pediatric human lung simultaneously. Cells were dissociated by protease digestion of neonatal and pediatric lung and isolated on the basis of unique cell membrane protein expression patterns. Epithelial, endothelial, nonendothelial mesenchymal, and immune cells were enriched by fluorescence-activated cell sorting. Dead cells and erythrocytes were excluded by 7-aminoactinomycin D uptake and glycophorin-A (CD235a) expression, respectively. Leukocytes were identified by membrane CD45 (protein tyrosine phosphatase, receptor type C), endothelial cells by platelet endothelial cell adhesion molecule-1 (CD31) and vascular endothelial cadherin (CD144), and both were isolated. Thereafter, epithelial cell adhesion molecule (CD326)-expressing cells were isolated from the endothelial- and immune cell-depleted population to enrich epithelial cells. Cells lacking these membrane markers were collected as "nonendothelial mesenchymal" cells. Quantitative RT-PCR and RNA sequencing analyses of population specific transcriptomes demonstrate the purity of the subpopulations of isolated cells. The method efficiently isolates major human lung cell populations that we announce are now available through the National Heart, Lung, and Blood Institute Lung Molecular Atlas Program (LungMAP) for their further study.


Assuntos
Biomarcadores/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Pneumopatias/patologia , Pulmão/citologia , Cadáver , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Pulmão/metabolismo , Pneumopatias/metabolismo , Masculino
12.
Circ Res ; 119(5): 621-34, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27354210

RESUMO

RATIONALE: Gamma aminobutyric acid (GABA), a neurotransmitter of the central nervous system, is found in the systemic circulation of humans at a concentration between 0.5 and 3 µmol/L. However, the potential source of circulating GABA and its significance on the vascular system remains unknown. We hypothesized that endothelial cells (ECs) may synthesize and release GABA to modulate some functions in the EC and after its release into the circulation. OBJECTIVE: To assess whether GABA is synthesized and released by the EC and its potential functions. METHODS AND RESULTS: Utilizing the human umbilical vein ECs and aortic ECs, we demonstrated for the first time that ECs synthesize and release GABA from [1-(14)C]glutamate. Localization of GABA and the presence of the GABA-synthesizing enzyme, glutamic acid decarboxylase in EC were confirmed by immunostaining and immunoblot analysis, respectively. The presence of GABA was further confirmed by immunohistochemistry in the EC lining the human coronary vessel. EC-derived GABA regulated the key mechanisms of ATP synthesis, fatty acid, and pyruvate oxidation in EC. GABA protected EC by inhibiting the reactive oxygen species generation and prevented monocyte adhesion by attenuating vascular cell adhesion molecule -1 and monocyte chemoattractant protein-1 expressions. GABA had no relaxing effect on rat aortic rings. GABA exhibited a dose-dependent fall in blood pressure. However, the fall in BP was abolished after pretreatment with pentolinium. CONCLUSIONS: Our findings indicate novel potential functions of endothelium-derived GABA.


Assuntos
Células Endoteliais/metabolismo , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/farmacologia
13.
Cell Tissue Res ; 368(3): 487-501, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28220294

RESUMO

Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In ß-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in ß-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO ß-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient ß-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of ß-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.


Assuntos
Cromogranina A/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Dinâmica Mitocondrial , Animais , Calreticulina/metabolismo , Diferenciação Celular , Cromogranina A/deficiência , Cromogranina A/metabolismo , Exocitose , Regulação da Expressão Gênica , Glucose/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/genética , Fragmentos de Peptídeos/metabolismo , Vesículas Secretórias
14.
Diabetologia ; 59(3): 582-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631215

RESUMO

AIMS/HYPOTHESIS: Tankyrase (TNKS) is a ubiquitously expressed molecular scaffold that is implicated in diverse processes. The catalytic activity of TNKS modifies substrate proteins through poly-ADP-ribosylation (PARsylation) and is responsive to cellular energetic state. Global deficiency of the TNKS protein in mice accelerates glucose utilisation and raises plasma adiponectin levels. The aim of this study was to investigate whether the PARsylation activity of TNKS in adipocytes plays a role in systemic glucose homeostasis. METHODS: To inhibit TNKS-mediated PARsylation, we fed mice with a diet containing the TNKS-specific inhibitor G007-LK. To genetically inactivate TNKS catalysis in adipocytes while preserving its function as a molecular scaffold, we used an adipocyte-selective Cre transgene to delete TNKS exons that encoded the catalytic domain at the C-terminus. Tissue-specific insulin sensitivity in mice was investigated using hyperinsulinaemic-euglycaemic clamps. To model adipose-liver crosstalk ex vivo, we applied adipocyte-conditioned media to hepatocytes and assessed the effect on gluconeogenesis. RESULTS: The TNKS inhibitor G007-LK improved glucose tolerance and insulin sensitivity and promptly increased plasma adiponectin levels. In female mice, but not in male mice, adipocyte-selective genetic inactivation of TNKS catalysis improved hepatic insulin sensitivity and post-transcriptionally increased plasma adiponectin levels. Both pharmacological and genetic TNKS inhibition in female mouse-derived adipocytes induced a change in secreted factors to decrease gluconeogenesis in primary hepatocytes. CONCLUSIONS/INTERPRETATION: Systemic glucose homeostasis is regulated by the PARsylation activity of TNKS in adipocytes. This regulation is mediated in part by adipocyte-secreted factors that modulate hepatic glucose production. Pharmacological TNKS inhibition could potentially be used to improve glucose tolerance.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/enzimologia , Glucose/metabolismo , Tanquirases/metabolismo , Animais , Glicemia/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Sulfonas/farmacologia , Tanquirases/antagonistas & inibidores , Triazóis/farmacologia
15.
Cell Tissue Res ; 363(3): 693-712, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26572539

RESUMO

Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30-40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100-200 nm) than in WT mice (200-350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.


Assuntos
Catecolaminas/metabolismo , Grânulos Cromafim/metabolismo , Cromogranina A/deficiência , Metabolismo Energético , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Western Blotting , Grânulos Cromafim/efeitos dos fármacos , Grânulos Cromafim/ultraestrutura , Cromogranina A/metabolismo , Dopamina/metabolismo , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Metabolismo Energético/efeitos dos fármacos , Epinefrina/metabolismo , Exocitose/efeitos dos fármacos , Glucose/metabolismo , Glicogênio/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Insulina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Norepinefrina/metabolismo , Nervos Esplâncnicos/efeitos dos fármacos , Nervos Esplâncnicos/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
16.
J Biol Chem ; 288(15): 10722-35, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23457303

RESUMO

Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 1/metabolismo , Animais , Células Cultivadas , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glucose/genética , Glucose/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina/genética , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirtuína 1/genética
17.
Nat Metab ; 6(5): 880-898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605183

RESUMO

The obesity epidemic continues to worsen worldwide, driving metabolic and chronic inflammatory diseases. Thiazolidinediones, such as rosiglitazone (Rosi), are PPARγ agonists that promote 'M2-like' adipose tissue macrophage (ATM) polarization and cause insulin sensitization. As ATM-derived small extracellular vesicles (ATM-sEVs) from lean mice are known to increase insulin sensitivity, we assessed the metabolic effects of ATM-sEVs from Rosi-treated obese male mice (Rosi-ATM-sEVs). Here we show that Rosi leads to improved glucose and insulin tolerance, transcriptional repolarization of ATMs and increased sEV secretion. Administration of Rosi-ATM-sEVs rescues obesity-induced glucose intolerance and insulin sensitivity in vivo without the known thiazolidinedione-induced adverse effects of weight gain or haemodilution. Rosi-ATM-sEVs directly increase insulin sensitivity in adipocytes, myotubes and primary mouse and human hepatocytes. Additionally, we demonstrate that the miRNAs within Rosi-ATM-sEVs, primarily miR-690, are responsible for these beneficial metabolic effects. Thus, using ATM-sEVs with specific miRNAs may provide a therapeutic path to induce insulin sensitization.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Resistência à Insulina , Macrófagos , Rosiglitazona , Animais , Rosiglitazona/farmacologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Insulina/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL
18.
Cell Metab ; 36(5): 1030-1043.e7, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670107

RESUMO

The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.


Assuntos
Proteínas de Ligação a DNA , Cirrose Hepática , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Fatores de Transcrição de Domínio TEA/metabolismo , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Processamento Alternativo , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Estreladas do Fígado/metabolismo , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Camundongos Knockout
19.
Genes (Basel) ; 15(3)2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540357

RESUMO

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Assuntos
Perfilação da Expressão Gênica , Pulmão , Animais , Humanos , Camundongos , Pulmão/metabolismo , Mamíferos/genética , Pericitos , Fenótipo , Transcriptoma/genética , Recém-Nascido
20.
J Biol Chem ; 287(27): 23141-51, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22535963

RESUMO

Chromogranin A knock-out (Chga-KO) mice display increased adiposity despite high levels of circulating catecholamines and leptin. Consistent with diet-induced obese mice, desensitization of leptin receptors caused by hyperleptinemia is believed to contribute to the obese phenotype of these KO mice. In contrast, obesity in ob/ob mice is caused by leptin deficiency. To characterize the metabolic phenotype, Chga-KO mice were treated with the CHGA-derived peptide catestatin (CST) that is deficient in these mice. CST treatment reduced fat depot size and increased lipolysis and fatty acid oxidation. In liver, CST enhanced oxidation of fatty acids as well as their assimilation into lipids, effects that are attributable to the up-regulation of genes promoting fatty acid oxidation (Cpt1α, Pparα, Acox, and Ucp2) and incorporation into lipids (Gpat and CD36). CST did not affect basal or isoproterenol-stimulated cAMP production in adipocytes but inhibited phospholipase C activation by the α-adrenergic receptor (AR) agonist phenylephrine, suggesting inhibition of α-AR signaling by CST. Indeed, CST mimicked the lipolytic effect of the α-AR blocker phentolamine on adipocytes. Moreover, CST reversed the hyperleptinemia of Chga-KO mice and improved leptin signaling as determined by phosphorylation of AMPK and Stat3. CST also improved peripheral leptin sensitivity in diet-induced obese mice. In ob/ob mice, CST enhanced leptin-induced signaling in adipose tissue. In conclusion, our results implicate CST in a novel pathway that promotes lipolysis and fatty acid oxidation by blocking α-AR signaling as well as by enhancing leptin receptor signaling.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Cromogranina A/farmacologia , Leptina/metabolismo , Obesidade/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Receptores Adrenérgicos alfa/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/metabolismo , Catecolaminas/metabolismo , Cromogranina A/genética , Cromogranina A/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA